[1]
|
El-Rub ZA, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43: 6911–6919.
|
[2]
|
Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev 106: 4044–4098. doi: 10.1021/cr068360d
|
[3]
|
Kumar A, Jones DD, Hanna MA (2009) Thermochemical biomass gasification: A review of the current status of the technology. Energies 2: 556–581. doi: 10.3390/en20300556
|
[4]
|
Spath PL, Dayton DC (2003) Preliminary screening - Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Golden: National Renewable Energy Laboratory pp. 142.
|
[5]
|
Berzin V, Kiriukhin M, Tyurin M (2012) Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113. Lett Appl Microbiol 55: 149–154. doi: 10.1111/j.1472-765X.2012.03272.x
|
[6]
|
Köpke M, Mihalcea C, Liew F, et al. (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77: 5467–5475. doi: 10.1128/AEM.00355-11
|
[7]
|
Liu K, Atiyeh HK, Tanner RS, et al. (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresource Technol 102: 336–341.
|
[8]
|
Maddipati P, Atiyeh HK, Bellmer DD, et al. (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technol 102: 6494–6501. doi: 10.1016/j.biortech.2011.03.047
|
[9]
|
Ramachandriya KD, Wilkins MR, Delorme MJM, et al. (2011) Reduction of acetone to isopropanol using producer gas fermenting microbes. Biotechnol Bioeng 108: 2330–2338. doi: 10.1002/bit.23203
|
[10]
|
Liu K, Atiyeh HK, Stevenson BS, et al. (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresource Technol 152: 337–346. doi: 10.1016/j.biortech.2013.11.015
|
[11]
|
Liu K, Atiyeh HK, Stevenson BS, et al. (2014) Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresource Technol 151: 69–77. doi: 10.1016/j.biortech.2013.10.059
|
[12]
|
Heiskanen H, Virkajärvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme MicrobTech 41: 362–367. doi: 10.1016/j.enzmictec.2007.03.004
|
[13]
|
Bertsch J, Muller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8.
|
[14]
|
Phillips JR, Atiyeh HK, Tanner RS, et al. (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresource Technol 190: 114–121. doi: 10.1016/j.biortech.2015.04.043
|
[15]
|
Wiselogel A, Tyson S, Johnson D (1996) Biomass feedstock resources and composition. In: Wyman CE, editor. Handbook on Bioethanol: Production and Utilization. Washington, DC: Taylor & Francis. 105–118.
|
[16]
|
Worden RM, Grethlein AJ, Jain MK, et al. (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70: 615–619. doi: 10.1016/0016-2361(91)90175-A
|
[17]
|
Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol. Biofuels, Bioprod Bior 5: 93–114. doi: 10.1002/bbb.256
|
[18]
|
Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotech 22: 326–330. doi: 10.1016/j.copbio.2011.03.005
|
[19]
|
Drzyzga O, Revelles O, Durante-Rodríguez G, et al. (2015) New challenges for syngas fermentation: towards production of biopolymers. J Cheml Technol Biot 90: 1735–1751. doi: 10.1002/jctb.4721
|
[20]
|
Latif H, Zeidan AA, Nielsen AT, et al. (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotech 27: 79–87. doi: 10.1016/j.copbio.2013.12.001
|
[21]
|
Yasin M, Jeong Y, Park S, et al. (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresource Technol 177: 361–374. doi: 10.1016/j.biortech.2014.11.022
|
[22]
|
Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5: 5372–5417. doi: 10.3390/en5125372
|
[23]
|
Aghbashlo M, Tabatabaei M, Dadak A, et al. (2016) Exergy-based performance analysis of a continuous stirred bioreactor for ethanol and acetate fermentation from syngas via Wood–Ljungdahl pathway. Chem Eng Sci 143: 36–46. doi: 10.1016/j.ces.2015.12.013
|
[24]
|
Islam MA, Zengler K, Edwards EA, et al. (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol. [In press].
|
[25]
|
Brown RC (2011) Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. Hoboken, NJ, USA: John Wiley & Sons, Ltd.
|
[26]
|
Higman C, van der Burgt M (2003) Gasification. Burlington, MA, USA: Gulf Professional Publishing. pp. 412.
|
[27]
|
Sharma A, Kumar A, Patil K, et al. (2011) Performance evaluation of a lab-scale fluidized bed gasifier using switchgrass as feedstock. T ASABE 54: 2259–2266. doi: 10.13031/2013.40639
|
[28]
|
Li XT, Grace JR, Lim CJ, et al. (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenerg 26: 171–193. doi: 10.1016/S0961-9534(03)00084-9
|
[29]
|
Ciferno JP, Marano JJ (2002) Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production. US Department of Energy National Energy Technology Laboratory, Pittsburgh, PA, USA.
|
[30]
|
Ahmed A, Cateni B, Huhnke R, et al. (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg 30: 665–672. doi: 10.1016/j.biombioe.2006.01.007
|
[31]
|
Boerrigter H, Rauch R (2005) Syngas production and utilization. In: Knoef HAM, editor. Handbook of Biomass Gasification. Enschede, The Netherlands: Biomass Technology Group. pp. 211–230.
|
[32]
|
Dogru M, Midilli A, Howarth CR (2002) Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Process Technol 75: 55–82. doi: 10.1016/S0378-3820(01)00234-X
|
[33]
|
Erlich C, Fransson TH (2011) Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: experimental study. Appl Energ 88: 899–908. doi: 10.1016/j.apenergy.2010.08.028
|
[34]
|
Kumabe K, Hanaoka T, Fujimoto S, et al. (2007) Co-gasification of woody biomass and coal with air and steam. Fuel 86: 684–689. doi: 10.1016/j.fuel.2006.08.026
|
[35]
|
Kumar A, Eskridge K, Jones DD, et al. (2009) Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technol 100: 2062–2068. doi: 10.1016/j.biortech.2008.10.011
|
[36]
|
Lv PM, Xiong ZH, Chang J, et al. (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technol 95: 95–101. doi: 10.1016/j.biortech.2004.02.003
|
[37]
|
Ahmed A, Lewis RS (2007) Fermentation of biomass-generated synthesis gas: Effects of nitric oxide. Biotechnol Bioeng 97: 1080–1086. doi: 10.1002/bit.21305
|
[38]
|
Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenerg 35: 2690–2696. doi: 10.1016/j.biombioe.2011.03.005
|
[39]
|
Barik S, Prieto S, Harrison SB, et al. (1988) Biological production of alcohols from coal through indirect liquefaction. Appl Biochem Biotech 18: 363–378. doi: 10.1007/BF02930840
|
[40]
|
Datar RP, Shenkman RM, Cateni BG, et al. (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86: 587–594. doi: 10.1002/bit.20071
|
[41]
|
Ramachandriya K, Wilkins M, Patil K (2013) Influence of switchgrass generated producer gas pre-adaptation on growth and product distribution of Clostridium ragsdalei. Biotechnol Bioproce 18: 1201–1209. doi: 10.1007/s12257-013-0384-3
|
[42]
|
Vega J, Klasson K, Kimmel D, et al. (1990) Sulfur gas tolerance and toxicity of CO-utilizing and methanogenic bacteria. Appl Biochem Biotech 24: 329–340.
|
[43]
|
Xu D, Lewis RS (2012) Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenerg 45: 303–310. doi: 10.1016/j.biombioe.2012.06.022
|
[44]
|
Ramachandriya KD (2009) Effect of biomass generated producer gas, methane and physical parameters on producer gas fermentations by Clostridium strain p11: Oklahoma State University. pp. 20.
|
[45]
|
Ensign SA, Hyman MR, Ludden PW (1989) Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry 28: 4973–4979. doi: 10.1021/bi00438a011
|
[46]
|
Grethlein AJ, Soni BK, Worden RM, et al. Influence of hydrogen sulfide on the growth and metabolism of butyribacterium methylotrophicum andclostridium acetobutylicum. Appl Biochem Biotech 34: 233–246.
|
[47]
|
Hyman MR, Ensign SA, Arp DJ, et al. (1989) Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry 28: 6821–6826. doi: 10.1021/bi00443a007
|
[48]
|
Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations. J Biosci Bioeng 109: 492–498. doi: 10.1016/j.jbiosc.2009.10.022
|
[49]
|
Kusel K, Karnholz A, Trinkwalter T, et al. (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67: 4734–4741. doi: 10.1128/AEM.67.10.4734-4741.2001
|
[50]
|
Pinto F, Franco C, Andre RN, et al. (2003) Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82: 1967–1976. doi: 10.1016/S0016-2361(03)00160-1
|
[51]
|
Shima S, Warkentin E, Thauer RK, et al. (2002) Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J Biosci Bioeng 93: 519–530. doi: 10.1016/S1389-1723(02)80232-8
|
[52]
|
Sun JH, Hyman MR, Arp DJ (1992) Acetylene inhibition of Azotobacter vinelandii hydrogenase: Acetylene binds tightly to the large subunit. Biochemistry 31: 3158–3165. doi: 10.1021/bi00127a016
|
[53]
|
Kusel K, Pinkart HC, Drake HL, et al. (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65: 5117.
|
[54]
|
Sprott G, Jarrell K, Shaw K, et al. (1982) Acetylene as an inhibitor of methanogenic bacteria. J Gen Microbiol 128: 2453.
|
[55]
|
Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142: 295–301. doi: 10.1007/BF00693407
|
[56]
|
Schink B (1985) Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. FEMS Microbiol Letters 31: 63–68. doi: 10.1111/j.1574-6968.1985.tb01132.x
|
[57]
|
Oremland RS, Taylor BF (1975) Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms. Appl Environ Microbiol 30: 707–709.
|
[58]
|
Rabou LPLM, Zwart RWR, Vreugdenhil BJ, et al. (2009) Tar in biomass producer gas, the Energy Research Centre of The Netherlands (ECN) experience: an enduring challenge. Energ Fuel 23: 6189–6198. doi: 10.1021/ef9007032
|
[59]
|
Cateni BG (2007) Effects of feed composition and gasification parameters on product gas from a pilot scale fluidized bed gasifier. Stillwater, Oklahoma: Oklahoma State University. pp. 384.
|
[60]
|
Caballero MA, Corella J, Aznar MP, et al. (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39: 1143–1154.
|
[61]
|
Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in Biomass gasification processes. Ind Eng Chem Res 43: 6911–6919. doi: 10.1021/ie0498403
|
[62]
|
Bhandari PN, Kumar A, Bellmer DD, et al. (2014) Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renew Energ 66: 346–353. doi: 10.1016/j.renene.2013.12.017
|
[63]
|
Qian KZ, Kumar A (2015) Reforming of lignin-derived tars over char-based catalyst using Py-GC/MS. Fuel 162: 47–54. doi: 10.1016/j.fuel.2015.08.064
|
[64]
|
James AM, Yuan WQ, Boyette MD, et al. (2014) In-chamber thermocatalytic tar cracking and syngas reforming using char-supported NiO catalyst in an updraft biomass gasifier. Int J Agric Biol Eng 7: 91–97.
|
[65]
|
Paterson N, Zhuo Y, Dugwell DR, et al. (2001) Investigation of ammonia formation during gasification in an air-blown spouted bed: Reactor design and initial tests. Energ Fuel 16: 127–135.
|
[66]
|
Burch R, Breen J, Meunier F (2002) A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl Catal B-Environ 39: 283–303. doi: 10.1016/S0926-3373(02)00118-2
|
[67]
|
Jiang H, Wang H, Liang F, et al. (2009) Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane. Angew Chem Int Edit 48: 2983–2986. doi: 10.1002/anie.200804582
|
[68]
|
Shelef M (1995) Selective catalytic reduction of NOx with N-free reductants. Chem Rev 95: 209–225. doi: 10.1021/cr00033a008
|
[69]
|
Qin X, Mohan T, El-Halwagi M, et al. (2006) Switchgrass as an alternate feedstock for power generation: an integrated environmental, energy and economic life-cycle assessment. Clean Technol Envir 8: 233–249. doi: 10.1007/s10098-006-0065-4
|
[70]
|
Simbeck DR, Dickenson RL, Oliver ED (1983) Coal-gasification systems: a guide to status, applications, and economics. Final report. EPRI-AP-3109 EPRI-AP-3109. Medium: X; Size: Pages: 408 p.
|
[71]
|
Smith K, Klasson K, Clausen A, et al. (1991) COS degradation by selected CO-utilizing bacteria. Appl Biochem Biotech 28: 787–796.
|
[72]
|
Hu P, Jacobsen LT, Horton JG, et al. (2010) Sulfide assessment in bioreactors with gas replacement. Biochem Eng J 49: 429–434. doi: 10.1016/j.bej.2010.02.006
|
[73]
|
Seefeldt LC, Arp DJ (1989) Oxygen Effects on the Nickel-Containing and Iron-Containing Hydrogenase from Azotobacter-Vinelandii. Biochemistry 28: 1588–1596. doi: 10.1021/bi00430a025
|
[74]
|
Drake H, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al., editors. The Prokaryotes. New York: Springer. pp. 354–420.
|
[75]
|
Karnholz A, Kusel K, Gossner A, et al. (2002) Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Environ Microbiol 68: 1005–1009. doi: 10.1128/AEM.68.2.1005-1009.2002
|
[76]
|
Zhitnev YN, Tveritinova EA, Lunin VV (2008) Catalytic properties of a copper-carbon system formed by explosive decomposition of copper acetylide. Russ J Phys Chem A 82: 140–143. doi: 10.1134/S003602440801024X
|
[77]
|
Yan Q, Wan C, Street J, et al. (2013) Catalytic removal of oxygen from biomass-derived syngas. Bioresource Technol 147: 117–123. doi: 10.1016/j.biortech.2013.08.036
|
[78]
|
Phillips S, Aden A, Jechura J, et al. (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. Golden: National Renewable Energy Laboratory, Golden, CO, USA. pp.125.
|
[79]
|
Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23: 487–493. doi: 10.1016/S0961-9534(02)00071-5
|
[80]
|
Phillips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Micrbiol Biot 45/46: 145–157.
|
[81]
|
Gaddy J, Arora D, Ko C-W, et al. (2007) Methods for increasing the production of ethanol from microbial fermentation. US Patent No 7,285,402.
|
[82]
|
Speight JG (2005) Handbook of Coal Analysis. Hoboken, NJ, USA: Wiley.
|
[83]
|
Ragsdale SW, Wood HG (1991) Enzymology of the Acetyl-CoA Pathway of CO2 Fixation. Crit Rev Biochem Mol 26: 261–300. doi: 10.3109/10409239109114070
|
[84]
|
Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180.
|
[85]
|
Hurst KM, Lewis RS (2010) Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem Eng J 48: 159–165. doi: 10.1016/j.bej.2009.09.004
|
[86]
|
Orgill JJ, Atiyeh HK, Devarapalli M, et al. (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresource Technol 133: 340–346. doi: 10.1016/j.biortech.2013.01.124
|
[87]
|
Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Progr 26: 1616–1621. doi: 10.1002/btpr.473
|
[88]
|
Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresource Technol 122: 130–136. doi: 10.1016/j.biortech.2012.03.053
|
[89]
|
Shen Y, Brown R, Wen Z (2014) Syngas fermentation of Clostridium carboxidivorans P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance. Biochem Eng J 85: 21–29. doi: 10.1016/j.bej.2014.01.010
|
[90]
|
Devarapalli M, Atiyeh HK, Phillips JR, et al. (2016) Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. Bioresource Technol 209: 56–65. doi: 10.1016/j.biortech.2016.02.086
|
[91]
|
Datta R, Zeikus JG (1985) Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl Environ Microb 49: 522–529.
|
[92]
|
Gaddy JL (2000) Biological production of products from waste gases with Clostridium ljundahlii. US Patent No 6,136,577.
|
[93]
|
Hu P, Bowen S, Lewis R (2011) A thermodynamic analysis of electron production during syngas fermentation. Bioresource Technol 102: 8071–7076. doi: 10.1016/j.biortech.2011.05.080
|
[94]
|
Vega JL, Holmberg VL, Clausen EC, et al. (1988) Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2). Arch Microbiol 151: 65–70. doi: 10.1007/BF00444671
|
[95]
|
Ramachandriya KD, Kundiyana DK, Wilkins MR, et al. (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energ 112: 289–299. doi: 10.1016/j.apenergy.2013.06.017
|