This paper verifies the semi-local convergence of a sixth-order iterative method for solving nonlinear systems. In the proof, the recursive relation method is used to prove the semi-local convergence of the iterative method in Banach spaces. The proof process outlined above does not necessitate the higher-order continuous differentiability of the function . The advantage of the iterative method is that by employing auxiliary sequences and functions, convergence can be established using only first-order Fréchet derivatives. The proposed sixth-order method reduces computational costs compared to existing sixth-order methods by requiring only one LU decomposition per iteration instead of two. Finally, this sixth-order iterative approach is utilized for solving Hammerstein equations along with real gas equation of state. The experimental results prove the effectiveness of the iterative method.
Citation: Li Yu, Xiaofeng Wang. Semi-local convergence of a sixth-order iterative method for solving nonlinear systems[J]. Electronic Research Archive, 2025, 33(6): 3794-3810. doi: 10.3934/era.2025168
[1] | Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028 |
[2] | Youshan Tao, J. Ignacio Tello . Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences and Engineering, 2016, 13(1): 193-207. doi: 10.3934/mbe.2016.13.193 |
[3] | Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521 |
[4] | Xin Lin, Xingyuan Li, Binqiang Ma, Lihua Hang . Identification of novel immunomodulators in lung squamous cell carcinoma based on transcriptomic data. Mathematical Biosciences and Engineering, 2022, 19(2): 1843-1860. doi: 10.3934/mbe.2022086 |
[5] | Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547 |
[6] | Yi Shi, Xiaoqian Huang, Zhaolan Du, Jianjun Tan . Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 5793-5812. doi: 10.3934/mbe.2022271 |
[7] | Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106 |
[8] | Yu Jiang, Lijuan Lin, Huiming Lv, He Zhang, Lili Jiang, Fenfen Ma, Qiuyue Wang, Xue Ma, Shengjin Yu . Immune cell infiltration and immunotherapy in hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2022, 19(7): 7178-7200. doi: 10.3934/mbe.2022339 |
[9] | Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage . Agent-based modeling for the tumor microenvironment (TME). Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335 |
[10] | Ernesto A. B. F. Lima, Patrick N. Song, Kirsten Reeves, Benjamin Larimer, Anna G. Sorace, Thomas E. Yankeelov . Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer. Mathematical Biosciences and Engineering, 2023, 20(10): 17625-17645. doi: 10.3934/mbe.2023783 |
This paper verifies the semi-local convergence of a sixth-order iterative method for solving nonlinear systems. In the proof, the recursive relation method is used to prove the semi-local convergence of the iterative method in Banach spaces. The proof process outlined above does not necessitate the higher-order continuous differentiability of the function . The advantage of the iterative method is that by employing auxiliary sequences and functions, convergence can be established using only first-order Fréchet derivatives. The proposed sixth-order method reduces computational costs compared to existing sixth-order methods by requiring only one LU decomposition per iteration instead of two. Finally, this sixth-order iterative approach is utilized for solving Hammerstein equations along with real gas equation of state. The experimental results prove the effectiveness of the iterative method.
[1] | J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970. https://doi.org/10.1016/C2013-0-11263-9 |
[2] |
H. Ren, Q. Wu, The convergence ball of the secant method under Hlder continuous divided differences, J. Comput. Appl. Math., 194 (2006), 284–293. http://doi.org/10.1016/j.cam.2005.07.008 doi: 10.1016/j.cam.2005.07.008
![]() |
[3] |
X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 102 (2025), 846–863. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
![]() |
[4] | W. Li, X. Wang, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. |
[5] |
P. P. Zabrejko, D. F. Nguen, The majorant method in the theory of newton-kantorovich approximations and the pták error estimates, Numer. Funct. Anal. Optim., 9 (1987), 671–684. http://doi.org/10.1080/01630568708816254 doi: 10.1080/01630568708816254
![]() |
[6] |
D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 42 (2025), 1599–1615. https://doi.org/10.1108/EC-08-2024-0775 doi: 10.1108/EC-08-2024-0775
![]() |
[7] |
I. K. Argyros, S. George, On the complexity of extending the convergence domain of Newton's method under the weak majorant condition, Can. Math. Bull., 67 (2024), 781–795. https://doi.org/10.4153/S000843952400016X doi: 10.4153/S000843952400016X
![]() |
[8] |
H. Singh, J. R. Sharma, S. Kumar, A simple yet efficient two-step fifth-order weighted-Newton method for nonlinear models, Numer. Algor., 93 (2023), 203–225. https://doi.org/10.1007/s11075-022-01412-w doi: 10.1007/s11075-022-01412-w
![]() |
[9] |
A. Cordero, R. V. Rojas-Hiciano, J. R. Torregrosa, M. P. Vassileva, Maximally efficient damped composed Newton-type methods to solve nonlinear systems of equations, Appl. Math. Comput., 492 (2025), 129231. https://doi.org/10.1016/j.amc.2024.129231 doi: 10.1016/j.amc.2024.129231
![]() |
[10] |
T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differenqtial equation with three weakly singular kernels, J. Appl. Math. Comput., 71 (2025), 3861–3889. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
![]() |
[11] |
K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
![]() |
[12] | H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion, SIAM J. Control Optim. 63 (2025), 596–624. https://doi.org/10.1137/23M1593681 |
[13] | Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes. IEEE Trans. Autom. Control, 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 |
[14] |
A. Cordero, E. Martínez, J. R. Torregrosa, Iterative methods of order four and five for systems of nonlinear equations, J. Comput. Appl. Math., 231 (2009), 541–551. https://doi.org/10.1016/j.cam.2009.04.015 doi: 10.1016/j.cam.2009.04.015
![]() |
[15] |
A. Cordero, J. L. Hueso, E. Martínez, J. R. Torregrosa, A modified Newton-Jarratt's composition, Numer. Algor., 55 (2010), 88–99. https://doi.org/10.1007/s11075-009-9359-z doi: 10.1007/s11075-009-9359-z
![]() |
[16] |
A. Cordero, J. R. Torregrosa, M. P. Vassileva, Pseudocomposition: A technique to design predictor-corrector methods for systems of nonlinear equations, Appl. Math. Comput., 218 (2012), 11496–11504. https://doi.org/10.1016/j.amc.2012.04.081 doi: 10.1016/j.amc.2012.04.081
![]() |
[17] | G. E. Alefeld, F. A. Potra, Z. Shen, On the existence theorems of Kantorovich, Moore and Miranda, in Topics in Numerical Analysis, 15 (2001), 21–28. http://doi.org/10.1007/978-3-7091-6217-0_3 |
[18] |
A. Cordero, J. G. Maimó, E. Martinez, J. R. Torregrosa, M. P. Vassileva, Semilocal convergence of the extension of Chun's method, Axioms, 10 (2021), 161. http://doi.org/10.3390/axioms10030161 doi: 10.3390/axioms10030161
![]() |
[19] |
S. Yadav, S. Singh, R. P. Badoni, A. Kumar, M. Singh, Semilocal convergence of Chebyshev Kurchatov type methods for non-differentiable operators, Comput. Math. Appl., 170 (2024), 275–281. https://doi.org/10.1016/j.camwa.2024.07.003 doi: 10.1016/j.camwa.2024.07.003
![]() |
[20] |
I. K. Argyros, A new convergence theorem for the Steffenssen method in Banach space and applications, Rev. Anal. Numér. Théor. Approx., 29 (2000), 119–127. https://doi.org/10.33993/jnaat292-661 doi: 10.33993/jnaat292-661
![]() |
[21] | J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000. |
[22] |
J. A. Ezquerro, M. A. Hernández, Halley's method for operators with unbounded second derivative, Appl. Numer. Math., 57 (2007), 354–360. https://doi.org/10.1016/j.apnum.2006.05.001 doi: 10.1016/j.apnum.2006.05.001
![]() |
1. | A. Friedman, Cancer as Multifaceted Disease, 2012, 7, 0973-5348, 3, 10.1051/mmnp/20127102 | |
2. | Teruki Nii, Toshie Kuwahara, Kimiko Makino, Yasuhiko Tabata, A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration, 2020, 26, 1937-3341, 1272, 10.1089/ten.tea.2020.0095 | |
3. | Alexei Tsygvintsev, Simeone Marino, Denise E. Kirschner, 2013, Chapter 13, 978-1-4614-4177-9, 367, 10.1007/978-1-4614-4178-6_13 | |
4. | Chongming Jiang, Chunyan Cui, Weirong Zhong, Gang Li, Li Li, Yuanzhi Shao, Tumor proliferation and diffusion on percolation clusters, 2016, 42, 0092-0606, 637, 10.1007/s10867-016-9427-2 | |
5. | Man‐Lan Guo, Mi‐Xin Sun, Jin‐Zhi Lan, Li‐Sha Yan, Jing‐Juan Zhang, Xiao‐Xia Hu, Shu Xu, Da‐Hua Mao, Hai‐Song Yang, Ya‐Wei Liu, Teng‐Xiang Chen, Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells, 2019, 37, 0263-6484, 72, 10.1002/cbf.3377 | |
6. | F. Caraguel, N. Bessonov, J. Demongeot, D. Dhouailly, V. Volpert, Wound Healing and Scale Modelling in Zebrafish, 2016, 64, 0001-5342, 343, 10.1007/s10441-016-9298-8 | |
7. | Yan Wang, Haiquan Jia, Huiyun Lin, Xiaogang Tan, Zhiyan Du, Huihua Chen, Yuanji Xu, Xiaoxi Han, Jiakai Zhang, Siyang Zhao, Xiaodan Yu, Yinglin Lu, Metastasis-associated gene,mag-1improves tumour microenvironmental adaptation and potentiates tumour metastasis, 2012, 16, 15821838, 3037, 10.1111/j.1582-4934.2012.01633.x | |
8. | 2013, Existence and uniqueness of weak solutions for a coupled mathematical model of tumor invasive process, 978-1-4673-2971-2, 688, 10.1109/ICCME.2013.6548338 | |
9. | Janet Dyson, Stephen A. Gourley, Glenn F. Webb, A non-local evolution equation model of cell–cell adhesion in higher dimensional space, 2013, 7, 1751-3758, 68, 10.1080/17513758.2012.755572 | |
10. | Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11 | |
11. | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, 2017, 14, 1551-0018, 217, 10.3934/mbe.2017014 | |
12. | Urszula Ledzewicz, Heinz Schättler, Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?, 2017, 401, 03043835, 74, 10.1016/j.canlet.2017.03.021 | |
13. | Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11 | |
14. | Xiaofeng Dai, Zhifa Zhang, Jianying Zhang, Kostya (Ken) Ostrikov, Dosing: The key to precision plasma oncology, 2020, 17, 1612-8850, 1900178, 10.1002/ppap.201900178 | |
15. | ABDELGHANI BELLOUQUID, ELENA DE ANGELIS, DAMIAN KNOPOFF, FROM THE MODELING OF THE IMMUNE HALLMARKS OF CANCER TO A BLACK SWAN IN BIOLOGY, 2013, 23, 0218-2025, 949, 10.1142/S0218202512500650 | |
16. | Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7 | |
17. | Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345 | |
18. | Sharad P. Paul, 2016, Chapter 9, 978-3-319-20936-4, 89, 10.1007/978-3-319-20937-1_9 | |
19. | Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y | |
20. | Georgiana Eftimie, Raluca Eftimie, Quantitative predictive approaches for Dupuytren disease: a brief review and future perspectives, 2022, 19, 1551-0018, 2876, 10.3934/mbe.2022132 | |
21. | S.N. Antontsev, A.A. Papin, M.A. Tokareva, E.I. Leonova, E.A. Gridushko, Modeling of Tumor Occurrence and Growth-III, 2021, 1561-9451, 71, 10.14258/izvasu(2021)4-11 | |
22. | Kolade M. Owolabi, Albert Shikongo, Edson Pindza, 2023, Chapter 3, 978-981-99-5000-3, 53, 10.1007/978-981-99-5001-0_3 |