[1]
|
M. Dehghan, A. Ghesmati, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 32 (2010), 324–336. https://doi.org/10.1016/j.enganabound.2009.10.010 doi: 10.1016/j.enganabound.2009.10.010
|
[2]
|
A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differ. Equations, 26 (2010), 239–252. https://doi.org/10.1002/num.20442 doi: 10.1002/num.20442
|
[3]
|
R. Jiwari, S. Pandit, R. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218 (2012), 7279–7294. https://doi.org/10.1016/j.amc.2012.01.006 doi: 10.1016/j.amc.2012.01.006
|
[4]
|
K. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations, Axioms, 5 (2016), 28. https://doi.org/10.3390/axioms5040028 doi: 10.3390/axioms5040028
|
[5]
|
M. S. Yudin, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., 96 (2017), e012002. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
|
[6]
|
T. Hillen, K. Hadeler, Hyperbolic systems and transport equations in mathematical biology, Carpath. J. Earth. Env., (2005), 257–279. https://doi.org/10.1007/3-540-27907-5_11 doi: 10.1007/3-540-27907-5_11
|
[7]
|
W. Alt, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., (2003), 431–461. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
|
[8]
|
K. K. Sharma, P. Singh, Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution, Carpath. J. Earth. Env., 201 (2008), 229–238. https://doi.org/10.1016/j.amc.2007.12.051 doi: 10.1016/j.amc.2007.12.051
|
[9]
|
K. Hadeler, K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations, Hyperbolic Part. Differ. Equations, (1983), 415–430. https://doi.org/10.1016/B978-0-08-030254-6.50016-1 doi: 10.1016/B978-0-08-030254-6.50016-1
|
[10]
|
I. Fedotov, M. Shatalov, J. Marais, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta. Mech., 227 (2016), 3315–3324. https://doi.org/10.1007/s00707-015-1537-6 doi: 10.1007/s00707-015-1537-6
|
[11]
|
G. Paul, Huygens' Principle and Hyperbolic Equations, Academic Press, 2014.
|
[12]
|
S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Springer Science & Business Media, 2013.
|
[13]
|
M. Dehghan, A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem., 34 (2010), 51–59. https://doi.org/10.1016/j.enganabound.2009.07.002 doi: 10.1016/j.enganabound.2009.07.002
|
[14]
|
A. Häck, Kinetic and Hyperbolic Equations with Applications to Engineering Processes, Ph.D thesis, Dissertation, RWTH Aachen University, 2017.
|
[15]
|
O. A. Ladyzhenskaya, The Mixed Problem for a Hyperbolic Equation, Gostekhizdat, MoscowX, 1953.
|
[16]
|
R. Sakamoto, Hyperbolic Boundary Value Problems, Cup Archive, 1982.
|
[17]
|
V. M. Gordienko, Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation, Sib. Electron. Math. Rep., 10 (2013), 311–323. https://www.mathnet.ru/eng/semr/v10/p311
|
[18]
|
A. N. Malyshev, A mixed problem for a second-order hyperbolic equation with a complex first-order boundary condition, Sibirskii Matematicheskii Zhurnal, 24 (1983), 102–121. https://doi.org/10.1007/BF00970317 doi: 10.1007/BF00970317
|
[19]
|
K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
|
[20]
|
Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
|
[21]
|
Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation. J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
|
[22]
|
C. Li, H. Zhang, X. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006
|
[23]
|
K. Li, W. Liao, Y. Lin, A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. Comput. Appl. Math., 361 (2019), 113–129. https://doi.org/10.1016/j.cam.2019.04.013 doi: 10.1016/j.cam.2019.04.013
|
[24]
|
W. Liao, On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation, J. Comput. Appl. Math., 270 (2014), 571–583. https://doi.org/10.1016/j.cam.2013.08.024 doi: 10.1016/j.cam.2013.08.024
|
[25]
|
W. Liao, P. Yong, H. Dastour, J. Huang, Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput., 321 (2018), 385–400. https://doi.org/10.1016/j.amc.2017.10.052 doi: 10.1016/j.amc.2017.10.052
|
[26]
|
D. Deng, D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188–209. https://doi.org/10.1016/j.amc.2018.02.010 doi: 10.1016/j.amc.2018.02.010
|
[27]
|
S. Das, W. Liao, A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation, J. Appl. Math. Comput., 258 (2014), 151–167. https://doi.org/10.1016/j.cam.2013.09.006 doi: 10.1016/j.cam.2013.09.006
|
[28]
|
B. D. Nie, B. Y. Cao, Three mathematical representations and an improved ADI method for hyperbolic heat conduction, Int. J. Heat Mass Transfer, 135 (2019), 974–984. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.026 doi: 10.1016/j.ijheatmasstransfer.2019.02.026
|
[29]
|
S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces, J. Sci. Comput., 63 (2015), 118–137. https://doi.org/10.1007/s10915-014-9887-0 doi: 10.1007/s10915-014-9887-0
|
[30]
|
W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
|
[31]
|
W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. https://doi.org/110.1080/00207160.2024.2323985
|
[32]
|
J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time‐fractional Black‐Scholes equation in European option pricing, Math. Method Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
|
[33]
|
J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
|
[34]
|
X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
|
[35]
|
H. Zhou, M. Huang, W. Ying, ADI schemes for heat equations with irregular boundaries and interfaces in 3D with applications, preprint, arXiv: 2309.00979. https://doi.org/10.48550/arXiv.2309.00979
|
[36]
|
X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
|
[37]
|
Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
|
[38]
|
T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
|
[39]
|
Z. Zhou, H. Zhang, X. Yang, A BDF2 ADI difference scheme for a three-dimensional nonlocal evolution equation with multi-memory kernels, Comput. Appl. Math., 43 (2024), 418. https://doi.org/10.1007/s40314-024-02931-z doi: 10.1007/s40314-024-02931-z
|
[40]
|
L. Qiao, W. Qiu, D. Xu, Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion, Numerical Algorithms, 93 (2023), 1083–1104. https://doi.org/10.1007/s11075-022-01454-0 doi: 10.1007/s11075-022-01454-0
|
[41]
|
W. Qiu, X. Zheng, K. Mustapha, Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping, Appl. Numer. Math., 213 (2025), 61–76. https://doi.org/10.1016/j.apnum.2025.02.018 doi: 10.1016/j.apnum.2025.02.018
|
[42]
|
W. Qiu, Y. Li, X. Zheng, Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates. Calcolo, 61 (2024), 50. https://doi.org/10.1007/s10092-024-00607-y doi: 10.1007/s10092-024-00607-y
|
[43]
|
L. Chen, Z. Wang, S. Vong, A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation. J. Appl. Math. Comput., 70 (2024), 5777–5794. https://doi.org/10.1007/s12190-024-02200-6 doi: 10.1007/s12190-024-02200-6
|
[44]
|
K. G. Tay, S. L. Kek, R. Abdul-Kahar, M. Azlan, M. Lee, A Richardson's Extrapolation spreadsheet calculator for Numerical Differentiation, Spreadsheets Educ., 6 (2013). http://epublications.bond.edu.au/ejsie/vol6/iss2/5
|
[45]
|
A. Alekseev, A. Bondarev, A comparison of the Richardson extrapolation and the approximation error estimation on the ensemble of numerical solutions, in International Conference on Computational Science, (2021), 554–566. https://doi.org/10.1007/978-3-030-77980-1_42
|
[46]
|
J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
|
[47]
|
X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
|
[48]
|
D. Ruan, X. Wang, A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications, Electron. Res. Arch., 33 (2025), 1398–1413. https://doi.org/10.3934/era.2025065 doi: 10.3934/era.2025065
|
[49]
|
X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 2025. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
|
[50]
|
D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 2025. https://doi.org/10.1108/EC-08-2024-0775 doi: 10.1108/EC-08-2024-0775
|
[51]
|
X. Wang, W. Li, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. https://hrcak.srce.hr/321249
|
[52]
|
J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), 20–31. https://doi.org/10.1137/0727002 doi: 10.1137/0727002
|
[53]
|
Z. Sun, Numerical Methods for Partial Differential Equations, Science Press, 2005.
|
[54]
|
Z. Sun, The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations, Science Press, 2009.
|