In this paper, we investigated the generalized lower triangular matrix algebra, and gave the sufficient and necessary condition for the generalized lower triangular matrix algebra to be quasi-tilted.
Citation: Xiu-Jian Wang, Jia-Bao Liu. Quasi-tilted property of generalized lower triangular matrix algebras[J]. Electronic Research Archive, 2025, 33(5): 3065-3073. doi: 10.3934/era.2025134
In this paper, we investigated the generalized lower triangular matrix algebra, and gave the sufficient and necessary condition for the generalized lower triangular matrix algebra to be quasi-tilted.
| [1] | D. Happel, I. Reiten, S. O. Smal$\phi$, Tilting in abelian categories and quasi-tilted algebras, Am. Math. Soc., 120 (1996), 575. |
| [2] |
F. Huard, One-point extensions of quasi-tilted algebras by projectives, Commun. Algebra, 29 (2001), 3055–3060. https://doi.org/10.1081/AGB-5005 doi: 10.1081/AGB-5005
|
| [3] |
F. U. Coelho, M. I. R. Martins, J. A. de la Pena, Quasitilted extensions of algebras Ⅰ, Proc. Am. Math. Soc., 129 (2000), 1289–1297. https://doi.org/10.1090/S0002-9939-00-05667-7 doi: 10.1090/S0002-9939-00-05667-7
|
| [4] |
F. U. Coelho, M. I. R. Martins, J. A. de la Pena, Quasitilted extensions of algebras Ⅱ, J. Algebra, 227 (2000), 582–594. https://doi.org/10.1006/jabr.1999.8199 doi: 10.1006/jabr.1999.8199
|
| [5] | S. Zito, A new proof concerning quasi-tilted algebras, Proc. Am. Math. Soc., 147 (2019), 2757–2760. |
| [6] |
I. Assem, R. Schiffler, K. Serhiyenko, Cluster-tilted and quasi-tilted algebras, J. Pure Appl. Algebra, 221 (2016), 2266–2288. https://doi.org/10.1016/j.jpaa.2016.12.008 doi: 10.1016/j.jpaa.2016.12.008
|
| [7] |
H. Gao, Z. Huang, Silting modules over triangular matrix rings, Taiwanese J. Math., 24 (2020), 1417–1437. https://doi.org/10.11650/tjm/200204 doi: 10.11650/tjm/200204
|
| [8] |
B. L. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl., 11 (2012), 125006. https://doi.org/10.1142/S0219498812500661 doi: 10.1142/S0219498812500661
|
| [9] |
P. Zhang, Monomorphism categories, cotilting theory and Gorenstein projective modules, J. Algebra, 339 (2011), 181–202. https://doi.org/10.1016/j.jalgebra.2011.05.018 doi: 10.1016/j.jalgebra.2011.05.018
|
| [10] |
E. E. Enochs, M. Cortes-Izurdiaga, B. Torrecillas, Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra, 218 (2014), 1544–1554. https://doi.org/10.1016/j.jpaa.2013.12.006 doi: 10.1016/j.jpaa.2013.12.006
|
| [11] | H. Eshraghi, R. Hafezi, S. Salarian, Z. W. Li, Gorenstein projective modules over triangular matrix rings, Algebra Colloq., 23 (2016), 97–104. |
| [12] |
L. X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Commun. Algebra, 48 (2020), 5296–5310. https://doi.org/10.1080/00927872.2020.1786837 doi: 10.1080/00927872.2020.1786837
|
| [13] | K. R. Goodearl, Ring Theory, Non Singular Rings and Modules, Marcel Dekker, New York and Basel, 1976. |