Research article

Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source

  • Published: 12 May 2025
  • Delayed pregnancy of predators and the Beverton-Holt-like alternative food source are key factors in controlling population density. To control the population density of Monochamus alternatus, the vector of pine wilt disease, this paper proposes a control system integrating the Holling II functional response function, Beverton-Holt-like alternative food source, and pregnancy delay. The conditions for the existence of the Hopf bifurcation were analyzed and we derived the normal form of Hopf bifurcation of the system with pregnancy delay and the Beverton-Holt-like alternative food source by using the multiple time scale method. Considering its biological significance, we selected a set of appropriate parameters for numerical simulation. Moreover, we also obtained that Hopf bifurcation can be induced under the effect of pregnancy delay. Finally, we put forward several biological elucidations that are useful for the prevention and treatment of pine wilt disease.

    Citation: Chen Wang, Ruizhi Yang. Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source[J]. Electronic Research Archive, 2025, 33(5): 2815-2839. doi: 10.3934/era.2025124

    Related Papers:

  • Delayed pregnancy of predators and the Beverton-Holt-like alternative food source are key factors in controlling population density. To control the population density of Monochamus alternatus, the vector of pine wilt disease, this paper proposes a control system integrating the Holling II functional response function, Beverton-Holt-like alternative food source, and pregnancy delay. The conditions for the existence of the Hopf bifurcation were analyzed and we derived the normal form of Hopf bifurcation of the system with pregnancy delay and the Beverton-Holt-like alternative food source by using the multiple time scale method. Considering its biological significance, we selected a set of appropriate parameters for numerical simulation. Moreover, we also obtained that Hopf bifurcation can be induced under the effect of pregnancy delay. Finally, we put forward several biological elucidations that are useful for the prevention and treatment of pine wilt disease.



    加载中


    [1] X. Tang, Y. Yuan, X. Li, J. Zhang, Maximum entropy modeling to predict the impact of climate change on pine wilt disease in China, Front. Plant Sci., 12 (2021), 652500. https://doi.org/10.3389/fpls.2021.652500 doi: 10.3389/fpls.2021.652500
    [2] J. Ye, Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures, Sci. Silvae Sini., 55 (2019), 1–10. https://doi.org/10.11707/j.1001-7488.20190901 doi: 10.11707/j.1001-7488.20190901
    [3] Z. Hao, J. Huang, X. Li, H. Sun, G. Fang, A multi-point aggregation trend of the outbreak of pine wilt disease in China over the past 20 years, For. Ecol. Manage., 505 (2022), 119890. https://doi.org/10.1016/j.foreco.2021.119890 doi: 10.1016/j.foreco.2021.119890
    [4] Y. Hou, Y. Ding, Bifurcation analysis of pine wilt disease model with both memory-based diffusion and nonlocal effect, Nonlinear Dyn., 112 (2024), 10723–10738. https://doi.org/10.1007/s11071-024-09598-5 doi: 10.1007/s11071-024-09598-5
    [5] Z. Yang, X. Wang, L. Cao, Y. Yao, Y. Tang, Re-description of Sclerodermus guani and revision of the genus (Hymenoptera: Bethylidae) in China, Chin. J. Biol. Control, 30 (2014), 1–12. https://doi.org/10.16409/j.cnki.2095-039x.2014.01.011 doi: 10.16409/j.cnki.2095-039x.2014.01.011
    [6] M. A. Khan, R. Khan, Y. Khan, S. Islam, A mathematical analysis of pine wilt disease with variable population size and optimal control strategies, Chaos Solitons Fractals, 108 (2018), 205–217. https://doi.org/10.1016/j.chaos.2018.02.002 doi: 10.1016/j.chaos.2018.02.002
    [7] X. Fei, Y. Hou, Y. Ding, Modeling and analysis of carbon emission-absorption model associated with urbanization process of China, Electron. Res. Arch., 31 (2023), 985–1003. https://doi.org/10.3934/era.2023049 doi: 10.3934/era.2023049
    [8] T. Yang, Y. Ding, Dynamic analysis of a delayed differential equation for Tropidothorax elegans pests, Electron. Res. Arch., 31 (2023), 6947–6963. https://doi.org/10.3934/era.2023352 doi: 10.3934/era.2023352
    [9] Y. Ma, R. Yang, Bifurcation analysis in a modified leslie-gower model with nonlocal competition and beddington-deangelis functional response, J, Appl. Anal. Comput., 15 (2025), 2152–2184. https://doi.org/10.11948/20240415 doi: 10.11948/20240415
    [10] J. Li, Y. Ding, Stability analysis of a pine wood nematode prevention and control model with delay, Int. J. Biomath., 2024 (2024), 2450012. https://doi.org/10.1142/S1793524524500128 doi: 10.1142/S1793524524500128
    [11] Y. Hou, Y. Ding, W. Jiang, Spatial pattern formation in pine wilt disease model with prey-taxis and nonlocal competition, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 3479–3504. https://doi.org/10.3934/dcdsb.2025030 doi: 10.3934/dcdsb.2025030
    [12] W. Gao, Y. Tong, L. Zhai, R. Yang, L. Tang, Turing instability and Hopf bifurcation in a predator-prey model with delay and predator harvesting, Adv. Differ. Equations, 2019 (2019), 270. https://doi.org/10.1186/s13662-019-2211-4 doi: 10.1186/s13662-019-2211-4
    [13] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [14] S. Fatah, A. Mustafa, S. Amin, Predator and n-classes-of-prey model incorporating extended Holling type Ⅱ functional response for n different prey species, AIMS Math., 8 (2023), 5779–5788. https://doi.org/10.3934/math.2023291 doi: 10.3934/math.2023291
    [15] C. Arancibia-Ibarra, M. Bode, J. Flores, G. Pettet, P. van Heijster, Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105802. https://doi.org/10.1016/j.cnsns.2021.105802 doi: 10.1016/j.cnsns.2021.105802
    [16] Y. Zhou, W. Sun, Y. Song, Z. Zheng, J. Lu, S. Chen, Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge, Nonlinear Dyn., 97 (2019), 1439–1450. https://doi.org/10.1007/s11071-019-05063-w doi: 10.1007/s11071-019-05063-w
    [17] A. F. Nindjin, M. A. Aziz-Alaoui, M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with time delay, Nonlinear Anal. Real World Appl., 7 (2006), 1104–1118. https://doi.org/10.1016/j.nonrwa.2005.10.003 doi: 10.1016/j.nonrwa.2005.10.003
    [18] G. Guo, X. Yang, C. Zhang, S. Li, Pattern formation with jump discontinuity in a predator-prey model with Holling-II functional response, Eur. J. Appl. Math., 2025 (2025), 1–23. https://doi.org/10.1017/S0956792525000063 doi: 10.1017/S0956792525000063
    [19] S. Wang, H. Yu, Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response, Math. Biosci. Eng., 18 (2021), 7877–7918. https://doi.org/10.3934/mbe.2021391 doi: 10.3934/mbe.2021391
    [20] A. Wan, J. Wei, Hopf bifurcation analysis of a food-limited population model with delay, Nonlinear Anal. Real World Appl., 11 (2010), 1087–1095. https://doi.org/10.1016/j.nonrwa.2009.01.052 doi: 10.1016/j.nonrwa.2009.01.052
    [21] S. Wang, Y. Ding, H. Lu, S. Gong, Stability and bifurcation analysis of SIQR for the COVID-19 epidemic model with time delay, Math. Biosci. Eng., 18 (2021), 5505–5524. https://doi.org/10.3934/mbe.2021278 doi: 10.3934/mbe.2021278
    [22] Z. Lv, J. Zeng, Y. Ding, X. Liu, Stability analysis of time-delayed SAIR model for duration of vaccine in the context of temporary immunity for COVID-19 situation, Electron. Res. Arch., 31 (2023), 1004–1030. https://doi.org/10.3934/era.2023050 doi: 10.3934/era.2023050
    [23] F. Wang, R. Yang, Dynamics of a delayed reaction-diffusion predator-prey model with nonlocal competition and double Allee effect in prey, Int. J. Biomath., 18 (2025), 2350097. https://doi.org/10.1142/S1793524523500973 doi: 10.1142/S1793524523500973
    [24] G. Mandal, S. Dutta, L. N. Guin, S. Chakravarty, Spatiotemporal behavior of a generalist predator-prey system with harvesting phenomena, Math. Methods Appl. Sci., 47 (2024), 2827–2867. https://doi.org/10.1002/mma.9780 doi: 10.1002/mma.9780
    [25] R. Yang, F. Wang, D. Jin, Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food, Math. Methods Appl. Sci., 45 (2022), 9967–9978. https://doi.org/10.1002/mma.8349 doi: 10.1002/mma.8349
    [26] P. D. N. Srinivasu, B. S. R. V. Prasad, Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation, Bull. Math. Biol., 73 (2011), 2249–2276. https://doi.org/10.1007/s11538-010-9601-9 doi: 10.1007/s11538-010-9601-9
    [27] B. Sahoo, S. Poria, Effects of additional food in a delayed predator-prey model, Math. Biosci., 261 (2015), 62–73. https://doi.org/10.1016/j.mbs.2014.12.002 doi: 10.1016/j.mbs.2014.12.002
    [28] S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Phys. A Stat. Mech. Appl., 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301
    [29] M. van Baalen, V. Křivan, P. C. J. van Rijn, M. W. Sabelis, Alternative food, switching predators, and the persistence of predator-prey systems, Am. Nat., 157 (2001), 512–524. https://doi.org/10.1086/319933 doi: 10.1086/319933
    [30] G. Guo, W. Li, Y. Du, S. Jafari, Turing instability of periodic solutions for a general Degn–Harrison model with cross-diffusion, Qual. Theory Dyn. Syst., 24 (2025), 89. https://doi.org/10.1007/s12346-025-01247-5 doi: 10.1007/s12346-025-01247-5
    [31] G. Guo, J. You, K. A. Abbakar, Pattern dynamics in a water-vegetation model with cross-diffusion and nonlocal delay, Math. Methods Appl. Sci., 48 (2025), 3190–3213. https://doi.org/10.1002/mma.10480 doi: 10.1002/mma.10480
    [32] G. Guo, J. Wang, Pattern formation and qualitative analysis for a vegetation-water model with diffusion, Nonlinear Anal. Real World Appl., 76 (2024), 104008. https://doi.org/10.1016/j.nonrwa.2023.104008 doi: 10.1016/j.nonrwa.2023.104008
    [33] F. Zhu, R. Yang, Bifurcation in a modified Leslie-Gower model with nonlocal competition and fear effect, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 2865–2893. https://doi.org/10.3934/dcdsb.2024195 doi: 10.3934/dcdsb.2024195
    [34] F. Wang, R. Yang, X. Zhang, Turing patterns in a predator-prey model with double Allee effect, Math. Comput. Simul., 220 (2024), 170–191. https://doi.org/10.1016/j.matcom.2024.01.015 doi: 10.1016/j.matcom.2024.01.015
    [35] Y. Ma, R. Yang, Hopf-Hopf bifurcation in a predator-prey model with nonlocal competition and refuge in prey, Discrete Contin. Dyn. Syst. Ser. B, 29 (2024), 2582–2609. https://doi.org/10.3934/dcdsb.2023193 doi: 10.3934/dcdsb.2023193
    [36] J. You, G. Guo, Pattern formation for a reversible biochemical reaction model with cross-diffusion and Michalis saturation, J. Math. Chem., 63 (2025), 888–910. https://doi.org/10.1007/s10910-025-01705-0 doi: 10.1007/s10910-025-01705-0
    [37] S. Chen, J. Shi, J. Wei, The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response, Comm. Pure Appl. Anal., 12 (2013), 481–501. https://doi.org/10.3934/cpaa.2013.12.481 doi: 10.3934/cpaa.2013.12.481
    [38] R. Yang, L. Wang, D. Jin, Hopf bifurcation analysis of a diffusive nutrient-phytoplankton model with time delay, Axioms, 11 (2022), 56. https://doi.org/10.3390/axioms11020056 doi: 10.3390/axioms11020056
    [39] Y. Ding, G. Liu, L. Zheng, Equivalence of MTS and CMR methods associated with the normal form of Hopf bifurcation for delayed reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106976. https://doi.org/10.1016/j.cnsns.2022.106976 doi: 10.1016/j.cnsns.2022.106976
    [40] A. Nayfeh, Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction, Nonlinear Dyn., 51 (2008), 483–500. https://doi.org/10.1007/s11071-007-9237-y doi: 10.1007/s11071-007-9237-y
    [41] R. Dong, Y. Hou, Y. Ding, The establishment of an ecological infection model of pine wilt disease based on nonlinear variation of saturation incidence and the time-delay of the disease control, J. Nankai Univ. Nat. Sci. Ed., 56 (2023), 92–102.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1018) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog