The boundedness of commutators of Calderón–Zygmund operators in grand variable exponent Morrey spaces is established. The operators and spaces are defined on quasi-metric measure spaces with doubling measure. The obtained results are applied to study regularity properties of solutions of the second-order partial differential equations with discontinuous coefficients in the frame of grand variable exponent Morrey spaces.
Citation: Dali Makharadze, Alexander Meskhi, Maria Alessandra Ragusa. Regularity results in grand variable exponent Morrey spaces and applications[J]. Electronic Research Archive, 2025, 33(5): 2800-2814. doi: 10.3934/era.2025123
The boundedness of commutators of Calderón–Zygmund operators in grand variable exponent Morrey spaces is established. The operators and spaces are defined on quasi-metric measure spaces with doubling measure. The obtained results are applied to study regularity properties of solutions of the second-order partial differential equations with discontinuous coefficients in the frame of grand variable exponent Morrey spaces.
| [1] |
V. Kokilashvili, A. Meskhi, H. Rafeiro, Commutators of sublinear operators in grand Morrey spaces, Stud. Sci. Math. Hung., 56 (2019), 211–232. https://doi.org/10.1556/012.2019.56.2.1425 doi: 10.1556/012.2019.56.2.1425
|
| [2] |
V. Kokilashvili, A. Meskhi, H. Rafeiro, Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications, Stud. Math., 217 (2013), 159–178. https://doi.org/10.4064/sm217-2-4 doi: 10.4064/sm217-2-4
|
| [3] |
V. Kokilashvili, A. Meskhi, M. A. Ragusa, Weighted extrapolation in grand Morrey spaces and applications to partial differential equations, Rend. Lincei-Mat. Appl., 30 (2019), 67–92. https://doi.org/10.4171/rlm/836 doi: 10.4171/rlm/836
|
| [4] |
E. Gordadze, A. Meskhi, M. A. Ragusa, On some extrapolation in generalized grand Morrey spaces and applications to $PDE$s, Electron. Res. Arch., 32 (2024), 551–564. https://doi.org/10.3934/era.2024027 doi: 10.3934/era.2024027
|
| [5] |
A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equations, 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
|
| [6] |
V. S. Guliyev, S. S. Aliyev, T. Karaman, P. S. Shukurov, Boundedness of sublinear operators and commutators on generalized Morrey spaces, Integr. Equations Oper. Theory, 71 (2011), 327–355. https://doi.org/10.1007/s00020-011-1904-1 doi: 10.1007/s00020-011-1904-1
|
| [7] | H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951. |
| [8] | L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
| [9] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Variable exponent lebesgue and amalgam spaces, in Integral Operators in Non-standard Function Spaces, Birkäuser/Springer, Heidelberg, 1 (2016). |
| [10] |
M. Izuki, E. Nakai, Y. Sawano, Function spaces with variable exponent–-An introduction, Sci. Math. Jpn., 77 (2014), 187–315. https://doi.org/10.32219/isms.77.2_187 doi: 10.32219/isms.77.2_187
|
| [11] |
T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 119 (1992), 129–143. https://doi.org/10.1007/BF00375119 doi: 10.1007/BF00375119
|
| [12] | L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscr. Math., 92 (1997), 249–258. |
| [13] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Variable exponent hölder, Morrey-Campanato and grand spaces, in Integral Operators in Non-standard Function Spaces, Birkhäuser Cham, 2 (2016). https://doi.org/10.1007/978-3-319-21018-6 |
| [14] |
V. Kokilashvili, A. Meskhi, Maximal and Calderón–Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (2014), 447–461. https://doi.org/10.1515/gmj-2014-0047 doi: 10.1515/gmj-2014-0047
|
| [15] |
D. E. Edmunds, V. Kokilashvili, A. Meskhi, Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces, Math. Nachr., 292 (2019), 2174–2188. https://doi.org/10.1002/mana.201800239 doi: 10.1002/mana.201800239
|
| [16] |
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc., 43 (1938), 126–166. https://doi.org/10.1090/S0002-9947-1938-1501936-8 doi: 10.1090/S0002-9947-1938-1501936-8
|
| [17] |
A. Almeida, J. Hasanov, S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J., 15 (2008), 195–208. https://doi.org/10.1515/GMJ.2008.195 doi: 10.1515/GMJ.2008.195
|
| [18] | H. Rafeiro, A note on boundedness of operators in grand grand Morrey spaces, in Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume, Birkhäuser/Springer Basel AG, Basel, 229 (2013), 349–356. https://doi.org/10.1007/978-3-0348-0516-2_19 |
| [19] |
V. Kokilashvili, A. Meskhi, Boundedness of operators of harmonic analysis in grand variable exponent Morrey spaces, Mediterr. J. Math., 20 (2023). https://doi.org/10.1007/s00009-023-02267-8 doi: 10.1007/s00009-023-02267-8
|
| [20] |
A. Meskhi, Y. Sawano, Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces, Mediterr. J. Math., 15 (2018). https://doi.org/10.1007/s00009-018-1145-5 doi: 10.1007/s00009-018-1145-5
|
| [21] |
T. Ohno, T. Shimomura, Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces, Czech. Math. J., 64 (2014), 209–228. https://doi.org/10.1007/s10587-014-0095-8 doi: 10.1007/s10587-014-0095-8
|
| [22] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Advances in grand function spaces, in Integral Operators in Non-Standard Function Spaces, Birkhäuser Cham, Switzerland, 2024. https://doi.org/10.1007/978-3-031-64983-7 |
| [23] | D. Makharadze, A. Meskhi, M. A. Ragusa, Commutators of Calderón–Zygmund operators in grand variable exponent Morrey spaces, and applications to PDEs, in International seminar Tbilisi Analysis & PDE Seminar, Birkhäuser, Cham, Switzerland, 7 (2024), 131–141. https://doi.org/10.1007/978-3-031-62894-8_13 |
| [24] | F. Chiarenza, M. Frasca, P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149–168. |
| [25] |
A. Bernardis, S. Hartzstein, G. Pradolini, Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type, J. Math. Anal. Appl., 322 (2006), 825–846. https://doi.org/10.1016/j.jmaa.2005.09.051 doi: 10.1016/j.jmaa.2005.09.051
|
| [26] | V. Kokilashvili, A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces with variable exponent, Armen. J. Math., 1 (2008), 18–28. |
| [27] | V. Kokilashvili, A. Meskhi, The Boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type, in Function Spaces and Inequalities. Springer Proceedings in Mathematics & Statistics (eds. P. Jain and H.J. Schmeisser), Springer, Singapore, 206 (2017), 193–211. https://doi.org/10.1007/978-981-10-6119-6_9 |
| [28] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
|
| [29] | J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Springer-Verlag, Berlin, 1381 (1989). https://doi.org/10.1007/BFb0091154 |
| [30] |
Y. Lu, Y. P. Zhu, Boundedness of some sublinear operators and commutators on Morrey–Herz spaces with variable exponents, Czech. Math. J., 64 (2014), 969–987. https://doi.org/10.1007/s10587-014-0147-0 doi: 10.1007/s10587-014-0147-0
|
| [31] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer-Verlag, Berlin, 224 (1983). https://doi.org/10.1007/978-3-642-61798-0 |
| [32] |
S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Ⅰ, Commun. Pure Appl. Math., 12 (1959), 623–727. https://doi.org/10.1002/cpa.3160120405 doi: 10.1002/cpa.3160120405
|
| [33] | N. Meyers, An $L^p$ e-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17 (1963), 189–206. |
| [34] |
F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. http://doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
|
| [35] |
D. Sarason, Functions of vanishing mean oscillation, Trans. Am. Math. Soc., 207 (1975), 391–405. https://doi.org/10.1090/S0002-9947-1975-0377518-3 doi: 10.1090/S0002-9947-1975-0377518-3
|
| [36] |
F. Chiarenza, M. Frasca, P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Am. Math. Soc., 336 (1993), 841–853. https://doi.org/10.1090/S0002-9947-1993-1088476-1 doi: 10.1090/S0002-9947-1993-1088476-1
|
| [37] |
C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui (Italian), Ann. Mat. Pura Appl., 63 (1963), 353–386. https://doi.org/10.1007/BF02412185 doi: 10.1007/BF02412185
|
| [38] | F. Chiarenza, M. Franciosi, M. Frasca, $L^p$-estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 5 (1994), 27–32. |
| [39] |
L. Caffarelli, Elliptic second order equations, Rend. Semin. Mat. Fis. Milano, 58 (1988), 253–284. https://doi.org/10.1007/BF02925245 doi: 10.1007/BF02925245
|
| [40] |
S. Campanato, Sistemi parabolici del secondo ordine, non variazionali, a coefficienti discontinui, Ann. Univ. Ferrara, 23 (1977), 169–187. https://doi.org/10.1007/BF02825996 doi: 10.1007/BF02825996
|