Research article Special Issues

Numerical investigation of a new cut finite element method for Stokes interface equations

  • Published: 25 April 2025
  • In this paper, we develop a new unfitted finite element method for the Stokes interface problem. In this method, the velocity is approximated using a piecewise linear continuous Galerkin element enriched by the lowest-order Raviart–Thomas element, while the pressure is approximated using a piecewise constant element. To construct a stable solver with an optimal convergence rate, we adopt cut finite element strategies and add ghost penalty terms for both velocity and pressure. We numerically show that the considered method achieves an optimal convergence rate as well as preserving the divergence constraint. Several benchmark problems are presented to test its stability, divergence property, and convergence performance, demonstrating the desired pressure and viscosity robustness in complex geometries, thereby outperforming other numerical methods.

    Citation: Kun Wang, Lin Mu. Numerical investigation of a new cut finite element method for Stokes interface equations[J]. Electronic Research Archive, 2025, 33(4): 2503-2524. doi: 10.3934/era.2025111

    Related Papers:

  • In this paper, we develop a new unfitted finite element method for the Stokes interface problem. In this method, the velocity is approximated using a piecewise linear continuous Galerkin element enriched by the lowest-order Raviart–Thomas element, while the pressure is approximated using a piecewise constant element. To construct a stable solver with an optimal convergence rate, we adopt cut finite element strategies and add ghost penalty terms for both velocity and pressure. We numerically show that the considered method achieves an optimal convergence rate as well as preserving the divergence constraint. Several benchmark problems are presented to test its stability, divergence property, and convergence performance, demonstrating the desired pressure and viscosity robustness in complex geometries, thereby outperforming other numerical methods.



    加载中


    [1] M. A. Olshanskii, A. Reusken, Analysis of a Stokes interface problem, Numer. Math., 103 (2006), 129–149. https://doi.org/10.1007/s00211-005-0646-x doi: 10.1007/s00211-005-0646-x
    [2] L. Yang, Q. Zhai, R. Zhang, The weak Galerkin finite element method for Stokes interface problems with curved interface, Appl. Numer. Math., 208 (2025), 98–122. https://doi.org/10.1016/j.apnum.2024.10.004 doi: 10.1016/j.apnum.2024.10.004
    [3] S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, Comput. Methods Appl. Mech. Eng., 348 (2019), 185–206. https://doi.org/10.1016/j.cma.2019.01.009 doi: 10.1016/j.cma.2019.01.009
    [4] T. Frachon, S. Zahedi, A cut finite element method for incompressible two-phase Navier-Stokes flows, J. Comput. Phys., 384 (2019), 77–98. https://doi.org/10.1016/j.jcp.2019.01.028 doi: 10.1016/j.jcp.2019.01.028
    [5] H. Liu, M. Neilan, M. Olshanskii, A CutFEM divergence-free discretization for the Stokes problem, ESAIM Math. Model. Numer. Anal., 57 (2023), 143–165. https://doi.org/10.1051/m2an/2022072 doi: 10.1051/m2an/2022072
    [6] K. Wang, L. Mu, An enriched cut finite element method for Stokes interface equations, Math. Comput. Simul., 218 (2024), 644–665. https://doi.org/10.1016/j.matcom.2023.12.016 doi: 10.1016/j.matcom.2023.12.016
    [7] L. Cattaneo, L. Formaggia, G. F. Iori, A. Scotti, P. Zunino, Stabilized extended finite elements for the approximation of saddle point problems with unfitted interface, Calcolo, 52 (2015), 123–152. https://doi.org/10.1007/s10092-014-0109-9 doi: 10.1007/s10092-014-0109-9
    [8] X. He, F. Song, W. Deng, A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 2849–2871. https://doi.org/10.3934/dcdsb.2021163 doi: 10.3934/dcdsb.2021163
    [9] N. Wang, J. Chen, A nonconforming Nitsche's extended finite element method for Stokes interface problems, J. Sci. Comput., 81 (2019), 342–374. https://doi.org/10.1007/s10915-019-01019-9 doi: 10.1007/s10915-019-01019-9
    [10] S. Adjerid, N. Chaabane, T. Lin, An immersed discontinuous finite element method for Stokes interface problems, Comput. Methods Appl. Mech. Eng., 293 (2015), 170–190. https://doi.org/10.1016/j.cma.2015.04.006 doi: 10.1016/j.cma.2015.04.006
    [11] X. Chen, Z. Li, J. R. Clvarez, A direct IIM approach for two-phase Stokes equations with discontinuous viscosity on staggered grids, Comput. Fluids, 172 (2018), 549–563. https://doi.org/10.1016/j.compfluid.2018.03.038 doi: 10.1016/j.compfluid.2018.03.038
    [12] Y. Chen, X. Zhang, A $P_2-P_1$ partially penalized immersed finite element method for Stokes interface problems, Int. J. Numer. Anal. Model., 18 (2021), 120–141.
    [13] S. Hou, P. Song, L. Wang, H. Zhao, A weak formulation for solving elliptic interface problems without body fitted grid, J. Comput. Phys., 249 (2013), 80–95. https://doi.org/10.1016/j.jcp.2013.04.025 doi: 10.1016/j.jcp.2013.04.025
    [14] J. Wang, Z. Zhang, Q. Zhuang, An immersed Crouzeix-Raviart finite element method for Navier-Stokes equations with moving interfaces, Int. J. Numer. Anal. Model., 19 (2022), 563–586.
    [15] N. Zhu, H. Rui, A divergence-free Petrov-Galerkin immersed finite element method for Stokes interface problem, J. Sci. Comput., 100 (2024), 4. https://doi.org/10.1007/s10915-024-02547-9 doi: 10.1007/s10915-024-02547-9
    [16] H. Fan, Z. Tan, Novel and general discontinuity-removing PINNs for elliptic interface problems, J. Comput. Phys., 529 (2025), 113861. https://doi.org/10.1016/j.jcp.2025.113861 doi: 10.1016/j.jcp.2025.113861
    [17] Y. H. Tseng, M. C. Lai, A discontinuity and cusp capturing PINN for Stokes interface problems with discontinuous viscosity and singular forces, Ann. Appl. Math., 39 (2023), 385–405.
    [18] X. Li, H. Rui, A low-order divergence-free H (div)-conforming finite element method for Stokes flows, IMA J. Numer. Anal., 42 (2022), 3711–3734. https://doi.org/10.1093/imanum/drab080 doi: 10.1093/imanum/drab080
    [19] T. Frachon, P. Hansbo, E. Nilsson, S. Zahedi, A divergence preserving cut finite element method for Darcy flow, SIAM J. Sci. Comput., 46 (2024), A1793–A1820. https://doi.org/10.1137/22M149702X doi: 10.1137/22M149702X
    [20] T. Frachon, E. Nilsson, S. Zahedi, Divergence-free cut finite element methods for Stokes flow, BIT Numer. Math., 64 (2024), 39. https://doi.org/10.1007/s10543-024-01040-x doi: 10.1007/s10543-024-01040-x
    [21] P. Hansbo, M. G. Larson, S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85 (2014), 90–114. https://doi.org/10.1016/j.apnum.2014.06.009 doi: 10.1016/j.apnum.2014.06.009
    [22] Y. Sun, W. Zhao, W. Zhao, Error estimates of finite element methods for the nonlinear backward stochastic Stokes equations, CSIAM Trans. Appl. Math., 6 (2025), 31–62. https://doi.org/10.4208/csiam-am.SO-2024-0021 doi: 10.4208/csiam-am.SO-2024-0021
    [23] I. Voulis, A. Reusken, A time dependent Stokes interface problem: Well-posedness and space-time finite element discretization, ESAIM Math. Model. Numer. Anal., 52 (2018), 2187–2213. https://doi.org/10.1051/m2an/2018053 doi: 10.1051/m2an/2018053
    [24] Q. Wang, P. Huang, Y. He, The Navier-Stokes-$\omega$/Navier-Stokes-$\omega$ model for fluid-fluid interaction using an unconditionally stable finite element scheme, Int. J. Numer. Anal. Model., 22 (2025), 178–201. https://doi.org/10.4208/ijnam2025-1009 doi: 10.4208/ijnam2025-1009
    [25] L. Yang, W. Mu, H. Peng, X. Wang, The weak Galerkin finite element method for the dual-porosity-Stokes model, Int. J. Numer. Anal. Model., 21 (2024), 587–608. https://doi.org/10.4208/ijnam2024-1023 doi: 10.4208/ijnam2024-1023
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(877) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog