Research article

$ SDD_2 $ tensors and $ B_2 $-tensors

  • Published: 23 April 2025
  • Strong $ \mathcal{H} $-tensors have many important applications in practical problems. In particular, strong $ \mathcal{H} $-tensors play an important role in the positive qualitative determination of multivariate even-order homogeneous polynomials. Therefore, research in this field is of great theoretical and practical value. This paper focuses on introducing a novel class of tensors, termed $ SDD_2 $ tensors, which are derived from $ SDD_2 $ matrices and constitute a subclass of strong $ \mathcal{H} $-tensors. Furthermore, we also investigate the relationships among $ SDD_2 $ tensors, strong $ \mathcal{H} $-tensors, $ SDD_1 $ tensors and $ SDD $ tensors. Additionally, we extend the concept of $ SDD_2 $ tensors to $ B $-tensors, thereby defining a new tensor class called $ B_2 $-tensors and analyzing their fundamental properties.

    Citation: Keru Wen, Jiaqi Qi, Yaqiang Wang. $ SDD_2 $ tensors and $ B_2 $-tensors[J]. Electronic Research Archive, 2025, 33(4): 2433-2451. doi: 10.3934/era.2025108

    Related Papers:

  • Strong $ \mathcal{H} $-tensors have many important applications in practical problems. In particular, strong $ \mathcal{H} $-tensors play an important role in the positive qualitative determination of multivariate even-order homogeneous polynomials. Therefore, research in this field is of great theoretical and practical value. This paper focuses on introducing a novel class of tensors, termed $ SDD_2 $ tensors, which are derived from $ SDD_2 $ matrices and constitute a subclass of strong $ \mathcal{H} $-tensors. Furthermore, we also investigate the relationships among $ SDD_2 $ tensors, strong $ \mathcal{H} $-tensors, $ SDD_1 $ tensors and $ SDD $ tensors. Additionally, we extend the concept of $ SDD_2 $ tensors to $ B $-tensors, thereby defining a new tensor class called $ B_2 $-tensors and analyzing their fundamental properties.



    加载中


    [1] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007
    [2] A. Cichocki, R. Zdunek, A. H. Phan, S. I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley & Sons, 2009.
    [3] M. Moakher, On the averaging of symmetric positive-definite tensors, J. Elast., 82 (2006), 273–296. https://doi.org/10.1007/s10659-005-9035-z doi: 10.1007/s10659-005-9035-z
    [4] T. Schultz, H. P. Seidel, Estimating crossing fibers: a tensor decomposition approach, IEEE Trans. Visual Comput. Graphics, 14 (2008), 1635–1642. https://doi.org/10.1109/TVCG.2008.128 doi: 10.1109/TVCG.2008.128
    [5] Y. Y. Xu, R. J. Zhao, B. Zheng, Some criteria for identifying strong $\mathcal{H}$-tensors, Numer. Algor., 80 (2019), 1121–1141. https://doi.org/10.1007/s11075-018-0519-x doi: 10.1007/s11075-018-0519-x
    [6] W. T. Duan, D. K. Wen, Y. Q. Wang, $SDD_1$ tensors and $B_1$-tensors, Electron. J. Linear Algebra, 40 (2024), 551–563. https://doi.org/10.13001/ela.2024.8569 doi: 10.13001/ela.2024.8569
    [7] Q. Ni, L. Qi, F. Wang, An eigenvalue method for the positive definiteness identification problem, IEEE Trans. Autom. Control, 53 (2008), 1096–1107. https://doi.org/10.1109/TAC.2008.923679 doi: 10.1109/TAC.2008.923679
    [8] Y. S. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854–873. https://doi.org/10.1007/s10957-014-0616-5 doi: 10.1007/s10957-014-0616-5
    [9] N. K. Bose, R. W. Newcomb, Tellegen's theorem and multivariable realizability theory, Int. J. Electron., 36 (1974), 417–425. https://doi.org/10.1080/00207217408900421 doi: 10.1080/00207217408900421
    [10] N. K. Bose, P. S. Kamat, Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process., 22 (1974), 307–-314. https://doi.org/10.1109/TASSP.1974.1162592 doi: 10.1109/TASSP.1974.1162592
    [11] B. Reznick, Some concrete aspects of Hilbert's 17th problem, Contemp. Math., 253 (2000), 251–272. https://doi.org/10.1090/conm/253/03936 doi: 10.1090/conm/253/03936
    [12] E. Kofidis, P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863–884. https://doi.org/10.1137/S0895479801387413 doi: 10.1137/S0895479801387413
    [13] M. Ng, L. Q. Qi, G. L. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090–1099. https://doi.org/10.1137/09074838X doi: 10.1137/09074838X
    [14] F. Wang, L. Qi, Comments on explicit criterion for the positive definiteness of a general quartic form, IEEE Trans. Autom. Control, 50 (2005), 416–418. https://doi.org/10.1109/tac.2005.843851 doi: 10.1109/tac.2005.843851
    [15] L. P. Zhang, L. Q. Qi, G. L. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437–452. https://doi.org/10.1137/130915339 doi: 10.1137/130915339
    [16] C. Q. Li, Y. T. Li, X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39–50. https://doi.org/10.1002/nla.1858 doi: 10.1002/nla.1858
    [17] T. G. Kolda, J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095–1124. https://doi.org/10.1137/100801482 doi: 10.1137/100801482
    [18] W. Y. Ding, L. Q. Qi, Y. M. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264–3278. https://doi.org/10.1016/j.laa.2013.08.038 doi: 10.1016/j.laa.2013.08.038
    [19] C. Q. Li, F. Wang, J. X. Zhao, Y. Zhu, Y. T. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1–14. https://doi.org/10.1016/j.cam.2013.04.022 doi: 10.1016/j.cam.2013.04.022
    [20] Y. T. Li, Q. L. Liu, L. Q. Qi, Programmable criteria for strong $\mathcal{H}$-tensors, Numer. Algor., 74 (2017), 199–221. https://doi.org/10.1007/s11075-016-0145-4 doi: 10.1007/s11075-016-0145-4
    [21] F. Wang, D. S. Sun, Y. M. Xu, Some criteria for identifying $\mathcal{H}$-tensors and its applications, Calcolo, 56 (2019). https://doi.org/10.1007/s10092-019-0316-5 doi: 10.1007/s10092-019-0316-5
    [22] W. B. Gong, Y. Li, Y. Q. Wang, An improved iterative algorithm for identifying strong $\mathcal{H}$‑tensors, Commun. Appl Math. Comput., 2024 (2024). https://doi.org/10.1007/s42967-023-00362-x doi: 10.1007/s42967-023-00362-x
    [23] F. Wang, D. S. Sun, Criteria for $\mathcal{H}$-tensors and an application, J. Numer. Methods Comput. Appl., 36 (2015), 215–224. https://doi.org/10.12288/szjs.2015.3.215 doi: 10.12288/szjs.2015.3.215
    [24] P. C. Zhao, New criterions for $\mathcal{H}$-tensors and its applications, Adv. Appl. Math., 11 (2022), 5727–5736. https://doi.org/10.12677/AAM.2022.118604 doi: 10.12677/AAM.2022.118604
    [25] F. Wang, D. S. Sun, J. X. Zhao, C. Q. Li, New practical criteria for $\mathcal{H}$-tensors and its application, Linear Multilinear Algebra, 65 (2016), 269–283. https://doi.org/10.1080/03081087.2016.1183558 doi: 10.1080/03081087.2016.1183558
    [26] Y. J. Wang, G. L. Zhou, L. Caccetta, Nonsingular $\mathcal{H}$-tensor and its criteria, J. Ind. Manage. Optim., 12 (2016), 1173–1186. https://doi.org/10.3934/jimo.2016.12.1173 doi: 10.3934/jimo.2016.12.1173
    [27] L. Liu, Y. Q. Wang, New Criteria for nonsingular $\mathcal{H}$-Tensors, Chin. Q. J. Math., 38 (2023), 123–133. https://doi.org/10.13371/j.cnki.chin.q.j.m.2023.02.002 doi: 10.13371/j.cnki.chin.q.j.m.2023.02.002
    [28] Q. Li, W. W. Ran, F. Wang, Infinity norm bounds for the inverse of generalized $SDD_2$ matrices with applications, Jpn. J. Ind. Appl. Math., 41 (2014), 1477–1500. https://doi.org/10.1007/s13160-024-00658-2 doi: 10.1007/s13160-024-00658-2
    [29] F. Wang, D. S. Sun, New criteria for $\mathcal{H}$-tensors and an application, J. Inequal. Appl., 96 (2016), 212–220. https://doi.org/10.1186/s13660-016-1041-0 doi: 10.1186/s13660-016-1041-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(797) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog