Research article Special Issues

Complex visual cognitive function based on a large-scale neurovascular and metabolic coupling mechanisms model in whole brain

  • Published: 22 April 2025
  • The neurovascular and metabolic coupling (NVMC) mechanism constitutes a critical physiological foundation for visual information processing. However, multimodal studies remain confined to phenomenological descriptions and fail to provide deeper theoretical investigations, preventing precise assessment of individuals. To address these limitations, we developed a heterogeneous whole-brain computational model of NVMC that integrates task-based EEG-MRI-fMRI multimodal data to simulate the cascading processes from neural mass firing to metabolic-hemodynamic responses. The model was validated against 33 resting-state simultaneous EEG-fMRI datasets. It was found that at the regional level, the fusiform exhibited stronger functional connectivity associated with face recognition, and its NVMC (CBF/FCS) demonstrated statistically significant differences between face stimuli (famous and unfamiliar faces) and scrambled faces (P < 0.001). Whole brain level analyses revealed reduced NVMC (CBF-FCS) with increasing face regularity and familiarity, despite nonsignificant differences in network indices. Subnetwork-level investigations further identified pronounced heterogeneity in functional interactions across distinct neural circuits. In this study, we developed a whole-brain-scale computational model to investigate the heterogeneity of NVMC during face-specific stimulus processing. The model provides an interpretable computational framework for enabling personalized assessments of visual cognitive tasks.

    Citation: Tongna Wang, Bao Li, Youjun Liu, Ruoyao Xu, Yuejuan Xu, Yang Yang, Liyuan Zhang. Complex visual cognitive function based on a large-scale neurovascular and metabolic coupling mechanisms model in whole brain[J]. Electronic Research Archive, 2025, 33(4): 2412-2432. doi: 10.3934/era.2025107

    Related Papers:

  • The neurovascular and metabolic coupling (NVMC) mechanism constitutes a critical physiological foundation for visual information processing. However, multimodal studies remain confined to phenomenological descriptions and fail to provide deeper theoretical investigations, preventing precise assessment of individuals. To address these limitations, we developed a heterogeneous whole-brain computational model of NVMC that integrates task-based EEG-MRI-fMRI multimodal data to simulate the cascading processes from neural mass firing to metabolic-hemodynamic responses. The model was validated against 33 resting-state simultaneous EEG-fMRI datasets. It was found that at the regional level, the fusiform exhibited stronger functional connectivity associated with face recognition, and its NVMC (CBF/FCS) demonstrated statistically significant differences between face stimuli (famous and unfamiliar faces) and scrambled faces (P < 0.001). Whole brain level analyses revealed reduced NVMC (CBF-FCS) with increasing face regularity and familiarity, despite nonsignificant differences in network indices. Subnetwork-level investigations further identified pronounced heterogeneity in functional interactions across distinct neural circuits. In this study, we developed a whole-brain-scale computational model to investigate the heterogeneity of NVMC during face-specific stimulus processing. The model provides an interpretable computational framework for enabling personalized assessments of visual cognitive tasks.



    加载中


    [1] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 442 (2006), 164–171. https://doi.org/10.1038/nature04970 doi: 10.1038/nature04970
    [2] M. Bahr-Hosseini, M. Bikson, Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action, Brain Stimul., 14 (2021), 837–847. https://doi.org/10.1016/j.brs.2021.04.015 doi: 10.1016/j.brs.2021.04.015
    [3] S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci., 87 (1990), 9868–9872. https://doi.org/10.1073/pnas.87.24.9868 doi: 10.1073/pnas.87.24.9868
    [4] A. D. Cohen, S. Moia, G. B. Pike, C. Caballero-Gaudes, Y. Wang, Resting state BOLD-perfusion coupling patterns using multiband multi-echo pseudo-continuous arterial spin label imaging, Sci. Rep., 15 (2025), 2108. https://doi.org/10.1038/s41598-024-81305-1 doi: 10.1038/s41598-024-81305-1
    [5] J. V. Haxby, E. A. Hoffman, M. I. Gobbini, The distributed human neural system for face perception, Trends Cog. Sci., 4 (2000), 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0 doi: 10.1016/S1364-6613(00)01482-0
    [6] L. Pessoa, S. Kastner, L. G. Ungerleider, Attentional control of the processing of neutral and emotional stimuli, Cognit. Brain Res., 15 (2002), 31–45. https://doi.org/10.1016/S0926-6410(02)00214-8 doi: 10.1016/S0926-6410(02)00214-8
    [7] M. I. Gobbini, J. V. Haxby, Neural systems for recognition of familiar faces, Neuropsychologia, 45 (2007), 32–41. https://doi.org/10.1016/j.neuropsychologia.2006.04.015 doi: 10.1016/j.neuropsychologia.2006.04.015
    [8] A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff, D. Clewett, S. Freeman, et al., Structural foundations of resting-state and task-based functional connectivity in the human brain, Proc. Natl. Acad. Sci. U S A, 110 (2013), 6169–6174. https://doi.org/10.1073/pnas.1219562110 doi: 10.1073/pnas.1219562110
    [9] B. Jeong, C. G. Wible, R. Hashimoto, M. Kubicki, Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia, Hum. Brain Mapp., 30 (2009), 4138–4151. https://doi.org/10.1002/hbm.20835 doi: 10.1002/hbm.20835
    [10] E. Pomarol-Clotet, E. J. Canales-Rodríguez, R. Salvador, S. Sarro, J. J. Gomar, F. Vila, et al., Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging, Mol. Psychiatr., 15 (2010), 823–830. https://doi.org/10.1038/mp.2009.146 doi: 10.1038/mp.2009.146
    [11] P. Skudlarski, K. Jagannathan, K. Anderson, M. C. Stevens, V. D. Calhoun, B. A. Skudlarska, et al., Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach, Biol. Psychiatr., 68 (2010), 61–69. https://doi.org/10.1089/brain.2011.0008 doi: 10.1089/brain.2011.0008
    [12] B. G. Nelson, D. S. Bassett, J. Camchong, E. T. Bullmore, K. O. Lim, Comparison of large-scale human brain functional and anatomical networks in schizophrenia, Neuroimage Clin., 15 (2017), 439–448. https://doi.org/10.1016/j.nicl.2017.05.007 doi: 10.1016/j.nicl.2017.05.007
    [13] Y. Gu, F. Han, L. E. Sainburg, M. M. Schade, O. M. Buxton, J. H. Duyn, et al., An orderly sequence of autonomic and neural events at transient arousal changes, NeuroImage, 264 (2022), 119720. https://doi.org/10.1016/j.neuroimage.2022.119720 doi: 10.1016/j.neuroimage.2022.119720
    [14] Z. Dai, Y. He, Disrupted structural and functional brain connectomes in mild cognitive impairment and Alzheimer's disease, Neurosci. Bull., 30 (2014), 217–232. https://doi.org/10.1007/s12264-013-1421-0 doi: 10.1007/s12264-013-1421-0
    [15] W. J. Lee, C. W. Yoon, S. W. Kim, H. J. Jeong, S. Seo, D. L. Na, et al., Effects of Alzheimer's and vascular pathologies on structural connectivity in early-and late-onset Alzheimer's disease, Front. Neurosci., 15 (2021), 606600. https://doi.org/10.3389/fnins.2021.606600 doi: 10.3389/fnins.2021.606600
    [16] M. Rezaei, H. Zare, H. Hakimdavoodi, S. Nasseri, P. Hebrani, Classification of drug-naive children with attention-deficit/hyperactivity disorder from typical development controls using resting-state fMRI and graph theoretical approach, Front. Hum. Neurosci., 16 (2022), 948706. https://doi.org/10.3389/fnhum.2022.948706 doi: 10.3389/fnhum.2022.948706
    [17] C. Song, T. Liu, H. Shi, Z. Jiao, HCTMFS: A multi-modal feature selection framework with higher-order correlated topological manifold for ESRDaMCI, Comput. Methods Prog. Bio., 243 (2024), 107905. https://doi.org/10.1016/j.cmpb.2023.107905 doi: 10.1016/j.cmpb.2023.107905
    [18] D. G. Wakeman, R. N. Henson, A multi-subject, multi-modal human neuroimaging dataset, Sci. Data, 2 (2015), 1–10. https://doi.org/10.1038/sdata.2015.1 doi: 10.1038/sdata.2015.1
    [19] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, 31 (2006), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 doi: 10.1016/j.neuroimage.2006.01.021
    [20] B. H. Jansen, V. G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biol. Cybern., 73 (1995), 357–366. https://doi.org/10.1007/BF00199471 doi: 10.1007/BF00199471
    [21] R. C. Sotero, N. J. Trujillo-Barreto, Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal, NeuroImage, 35 (2007), 149–165. https://doi.org/10.1016/j.neuroimage.2006.10.027 doi: 10.1016/j.neuroimage.2006.10.027
    [22] K. J. Friston, A. Mechelli, R. Turner, C. J. Price, Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics, NeuroImage, 12 (2000), 466–477. https://doi.org/10.1006/nimg.2000.0630 doi: 10.1006/nimg.2000.0630
    [23] R. B. Buxton, K. Uludağ, D. J. Dubowitz, T. T. Liu, Modeling the hemodynamic response to brain activation, NeuroImage, 23 (2004), S220–S233. https://doi.org/10.1016/j.neuroimage.2004.07.013 doi: 10.1016/j.neuroimage.2004.07.013
    [24] L. Wang, M. Xia, K. Li, Y. Zeng, Y. Su, W. Dai, et al., The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder, Hum. Brain Mapp., 36 (2015), 768–778. https://doi.org/10.1002/hbm.22663 doi: 10.1002/hbm.22663
    [25] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, 52 (2010), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 doi: 10.1016/j.neuroimage.2009.10.003
    [26] H. Tao, S. Guo, T. Ge, K. M. Kendrick, Z. Xue, Z. Liu, et al., Depression uncouples brain hate circuit, J. Mol. Psychiatry, 18 (2013), 101–111. https://doi.org/10.1038/mp.2011.127 doi: 10.1038/mp.2011.127
    [27] F. Fröhlich, Network neuroscience, in Book Network Neuroscience, Academic Press, (2016).https://doi.org/10.1016/C2013-0-23281-5
    [28] K. D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Organization of cell assemblies in the hippocampus, Nature, 424 (2003), 552–556. https://doi.org/10.1038/nature01834 doi: 10.1038/nature01834
    [29] B. Pesaran, Neural correlations, decisions, and actions, Curr. Opin. Neurobiol., 20 (2010), 166–171. https://doi.org/10.1016/j.conb.2010.03.003 doi: 10.1016/j.conb.2010.03.003
    [30] O. David, K. J. Friston, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage, 20 (2003), 1743–1755. https://doi.org/10.1016/j.neuroimage.2003.07.015 doi: 10.1016/j.neuroimage.2003.07.015
    [31] B. H. Jansen, G. Zouridakis, M. E. Brandt, A neurophysiologically-based mathematical model of flash visual evoked potentials, Biol. Cybern., 68 (1993), 275–283. https://doi.org/10.1007/BF00224863 doi: 10.1007/BF00224863
    [32] F. Wendling, J. J. Bellanger, F. Bartolomei, P. Chauvel, Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biol. Cybern., 83 (2000), 367–378. https://doi.org/10.1007/s004220000160 doi: 10.1007/s004220000160
    [33] F. Wendling, F. Bartolomei, J. J. Bellanger, P. Chauvel, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition, Eur. J. Neurosci., 15 (2002), 1499–1508. https://doi.org/10.1046/j.1460-9568.2002.01985.x doi: 10.1046/j.1460-9568.2002.01985.x
    [34] D. Cui, X. Li, X. Ji, L. Liu, Multi-channel neural mass modelling and analyzing, Sci. China Inf. Sci., 54 (2011), 1283–1292. https://doi.org/10.1007/s11432-011-4216-9 doi: 10.1007/s11432-011-4216-9
    [35] E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius, A. W. Toga, Mapping cortical change across the human life span, Nat. Neurosci., 6 (2003), 309–315. https://doi.org/10.1038/nn1008 doi: 10.1038/nn1008
    [36] K. Wang, T. Jiang, C. Yu, L. Tian, J. Li, Y. Liu, et al., Spontaneous activity associated with primary visual cortex: A resting-state FMRI study, Cereb. Cortex, 18 (2008), 697–704. https://doi.org/10.1093/cercor/bhm105 doi: 10.1093/cercor/bhm105
    [37] A. M. Owen, K. M. McMillan, A. R. Laird, E. Bullmore, N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies, Hum. Brain Mapp., 25 (2005), 46–59. https://doi.org/10.1002/hbm.20131 doi: 10.1002/hbm.20131
    [38] W. K. Kirchner, Age differences in short-term retention of rapidly changing information, J. Exp. Psychol., 55 (1958), 352. https://doi.org/10.1037/h0043688 doi: 10.1037/h0043688
    [39] R. S. Astur, R. T. Constable, Hippocampal dampening during a relational memory task, Behav. Neurosci., 118 (2004), 667. https://doi.org/10.1037/0735-7044.118.4.667 doi: 10.1037/0735-7044.118.4.667
    [40] J. U. Blicher, C. J. Stagg, J. O'shea, L. Østergaard, B. J. MacIntosh, H. Johansen-Berg, et al., Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI, J. Cereb. Blood Flow Metab., 32 (2012), 2044–2054. https://doi.org/10.1038/jcbfm.2012.105 doi: 10.1038/jcbfm.2012.105
    [41] Z. Ruan, D. Sun, X. Zhou, M. Yu, S. Li, W. Sun, et al., Altered neurovascular coupling in patients with vascular cognitive impairment: a combined ASL-fMRI analysis, Front. Aging Neurosci., 15 (2023). https://doi.org/10.3389/fnagi.2023.1224525 doi: 10.3389/fnagi.2023.1224525
    [42] K. Grill-Spector, R. Sayres, D. Ress, High-resolution imaging reveals highly selective nonface clusters in the fusiform face area, Nat. Neurosci., 9 (2006), 1177–1185. https://doi.org/10.1038/nn1745 doi: 10.1038/nn1745
    [43] C. Huneau, M. Houot, A. Joutel, B. Béranger, C. Giroux, H. Benali, et al., Altered dynamics of neurovascular coupling in CADASIL, Ann. Clin. Transl. Neurol., 5 (2018), 788–802. https://doi.org/10.1002/acn3.574 doi: 10.1002/acn3.574
    [44] J. Zhu, C. Zhuo, L. Xu, F. Liu, W. Qin, C. Yu, Altered coupling between resting-state cerebral blood flow and functional connectivity in schizophrenia, Schizophr. Bull., 43 (2017), 1363–1374. https://doi.org/10.1093/schbul/sbx051 doi: 10.1093/schbul/sbx051
    [45] B. Hu, L. F. Yan, Q. Sun, Y. Yu, J. Zhang, Y. J. Dai, et al., Disturbed neurovascular coupling in type 2 diabetes mellitus patients: Evidence from a comprehensive fMRI analysis, Neuroimage Clin., 22 (2019), 101802. https://doi.org/10.1016/j.nicl.2019.101802 doi: 10.1016/j.nicl.2019.101802
    [46] R. Henson, T. Shallice, R. Dolan, Neuroimaging evidence for dissociable forms of repetition priming, Science, 287 (2000), 1269–1272. https://doi.org/10.1126/science.287.5456.1269 doi: 10.1126/science.287.5456.1269
    [47] H. C. Breiter, N. L. Etcoff, P. J. Whalen, W. A. Kennedy, S. L. Rauch, R. L. Buckner, et al., Response and habituation of the human amygdala during visual processing of facial expression, Neuron, 17 (1996), 875–887. https://doi.org/10.1016/S0896-6273(00)80219-6 doi: 10.1016/S0896-6273(00)80219-6
    [48] S. R. Schweinberger, V. Huddy, A. M. Burton, N250r: A face-selective brain response to stimulus repetitions, Neuroreport, 15 (2004), 1501–1505. https://doi.org/10.1097/01.wnr.0000131675.00319.42 doi: 10.1097/01.wnr.0000131675.00319.42
    [49] R. E. Cytowic, Synesthesia: A union of the senses, in Synesthesia: A Union of the Senses, MIT Press, (2002).https://doi.org/10.1038/343030a0
    [50] M. Belyk, S. Brown, J. Lim, S. A. Kotz, Convergence of semantics and emotional expression within the IFG pars orbitalis, NeuroImage, 156 (2017), 240–248. https://doi.org/10.1016/j.neuroimage.2017.04.020 doi: 10.1016/j.neuroimage.2017.04.020
    [51] L. R. Squire, S. Zola-Morgan, The medial temporal lobe memory system, Science, 253 (1991), 1380–1386. https://doi.org/10.1126/science.1896849 doi: 10.1126/science.1896849
    [52] M. E. Raichle, A. Z. Snyder, A default mode of brain function: a brief history of an evolving idea, NeuroImage, 37 (2007), 1083–1090. https://doi.org/10.1016/j.neuroimage.2007.02.041 doi: 10.1016/j.neuroimage.2007.02.041
    [53] G. Turrigiano, Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement, Annu. Rev. Neurosci., 34 (2011), 89–103. https://doi.org/10.1146/annurev-neuro-060909-153238 doi: 10.1146/annurev-neuro-060909-153238
    [54] J. S. Isaacson, M. Scanziani, How inhibition shapes cortical activity, Neuron, 72 (2011), 231–243. https://doi.org/10.1016/j.neuron.2011.09.027 doi: 10.1016/j.neuron.2011.09.027
    [55] P. Wang, R. Kong, X. Kong, R. Liégeois, C. Orban, G. Deco, et al., Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain, Sci. Adv., 5 (2019), eaat7854. https://doi.org/10.1126/sciadv.aat7854 doi: 10.1126/sciadv.aat7854
    [56] G. Patow, L. Stefanovski, P. Ritter, G. Deco, X. Kobeleva, A. D. N. Initiative, Whole-brain modeling of the differential influences of amyloid-beta and tau in Alzheimer's disease, Alzheimers Res. Ther., 15 (2023), 210. https://doi.org/10.1186/s13195-023-01349-9 doi: 10.1186/s13195-023-01349-9
    [57] S. Bensaid, J. Modolo, I. Merlet, F. Wendling, P. Benquet, COALIA: A computational model of human EEG for consciousness research, Front. Syst. Neurosci., 13 (2019), 59. https://doi.org/10.3389/fnsys.2019.00059 doi: 10.3389/fnsys.2019.00059
    [58] E. Köksal-Ersöz, M. Yochum, P. Benquet, F. Wendling, eCOALIA: Neocortical neural mass model for simulating electroencephalographic signals, SoftwareX, 28 (2024), 101924. https://doi.org/10.1016/j.softx.2024.101924 doi: 10.1016/j.softx.2024.101924
    [59] M. Al Harrach, M. Yochum, F. Wendling, NeoCoMM: Neocortical neuro-inspired computational model for realistic microscale simulations, SoftwareX, 30 (2025), 102108. https://doi.org/10.1016/j.softx.2025.102108 doi: 10.1016/j.softx.2025.102108
    [60] K. Bansal, J. Nakuci, S. F. Muldoon, Personalized brain network models for assessing structure-function relationships, Curr. Opin. Neurobiol., 52 (2018), 42–47. https://doi.org/10.1016/j.conb.2018.04.014 doi: 10.1016/j.conb.2018.04.014
    [61] T. Proix, A. Spiegler, M. Schirner, S. Rothmeier, P. Ritter, V. K. Jirsa, How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?, NeuroImage, 142 (2016), 135–149. https://doi.org/10.1016/j.neuroimage.2016.06.016 doi: 10.1016/j.neuroimage.2016.06.016
  • era-33-04-107_ESM.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(970) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog