Loading [MathJax]/jax/output/SVG/jax.js
Editorial

At the crossroads of datas: Using artificial intelligence for efficient and resilient planning in African cities

  • Received: 25 December 2023 Revised: 29 December 2023 Accepted: 30 December 2023 Published: 31 December 2023
  • By collecting and conducting in-depth analysis of official statistical data, empirical evidence, and exploring integrated artificial intelligence (AI) approaches in diverse African urban landscapes, this article examines the integration of formal and informal data to bolster urban resilience in Africa. It underscores the significance of this diverse data in crafting effective urban planning strategies tailored to the needs of African city-dwellers. The AI-driven analysis, amalgamating these datasets, provides a comprehensive understanding of urban realities and community needs in African cities. Additionally, the article emphasizes how harnessing so-called informal data—often overlooked yet crucial—alongside formal data enables more contextual and adaptive planning aligned with local needs and aspirations. Highlighting the transformative potential of data-driven approaches, the article presents AI strategies as proactive tools to address the challenges faced by African cities, fostering resilience amidst socio-economic and environmental shifts. Ultimately, it advocates for the integration of diverse data sources in urban planning, utilizing AI as a catalyst, underlining the importance of a holistic approach that values both formal and informal data for sustainable and resilient urban development in Africa.

    Citation: Cheikh Cisse. At the crossroads of datas: Using artificial intelligence for efficient and resilient planning in African cities[J]. Urban Resilience and Sustainability, 2023, 1(4): 309-313. doi: 10.3934/urs.2023019

    Related Papers:

    [1] Hong-Yi Chang, Hung-Wen Tsai, Chiao-Fang Teng, Lily Hui-Ching Wang, Wenya Huang, Ih-Jen Su . Ground glass hepatocytes provide targets for therapy or prevention of hepatitis B virus-related hepatocellular carcinoma. AIMS Medical Science, 2018, 5(2): 90-101. doi: 10.3934/medsci.2018.2.90
    [2] Teruo Sekimoto, Takamasa Tanaka, Tatsuya Shiraki, Renu Virmani, Aloke V. Finn . How does atherosclerotic plaque become calcified, and why?. AIMS Medical Science, 2024, 11(4): 421-438. doi: 10.3934/medsci.2024029
    [3] Margarida Pujol-López, Luis Ortega-Paz, Manel Garabito, Salvatore Brugaletta, Manel Sabaté, Ana Paula Dantas . miRNA Update: A Review Focus on Clinical Implications of miRNA in Vascular Remodeling. AIMS Medical Science, 2017, 4(1): 99-112. doi: 10.3934/medsci.2017.1.99
    [4] Nádia C. M. Okuyama, Fernando Cezar dos Santos, Kleber Paiva Trugilo, Karen Brajão de Oliveira . Involvement of CXCL12 Pathway in HPV-related Diseases. AIMS Medical Science, 2016, 3(4): 417-440. doi: 10.3934/medsci.2016.4.417
    [5] Luis Miguel Juárez-Salcedo, Luis Manuel González, Samir Dalia . Immunotherapy for diffuse large B-cell lymphoma: current use of immune checkpoint inhibitors therapy. AIMS Medical Science, 2023, 10(3): 259-272. doi: 10.3934/medsci.2023020
    [6] Wenping Lin, Kai Dai, Luokun Xie . Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS Medical Science, 2016, 3(4): 312-328. doi: 10.3934/medsci.2016.4.312
    [7] Somayeh Boshtam, Mohammad Shokrzadeh, Nasrin Ghassemi-Barghi . Fluoxetine induces oxidative stress-dependent DNA damage in human hepatoma cells. AIMS Medical Science, 2023, 10(1): 69-79. doi: 10.3934/medsci.2023007
    [8] Sabrina K Uppal, Toni L Uhlendorf, Ruslan L Nuryyev, Jacqueline Saenz, Menaga Shanmugam, Jessica Ochoa, William Van Trigt, Cindy S Malone, Andrew P St. Julian, Oleg Kopyov, Alex Kopyov, Randy W Cohen . Human neural progenitor cells ameliorate NMDA-induced hippocampal degeneration and related functional deficits. AIMS Medical Science, 2021, 8(3): 252-268. doi: 10.3934/medsci.2021021
    [9] Michiro Muraki . Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS Medical Science, 2020, 7(3): 122-203. doi: 10.3934/medsci.2020011
    [10] Michiro Muraki . Human Fas ligand extracellular domain: current status of biochemical characterization, engineered-derivatives production, and medical applications. AIMS Medical Science, 2022, 9(4): 467-485. doi: 10.3934/medsci.2022025
  • By collecting and conducting in-depth analysis of official statistical data, empirical evidence, and exploring integrated artificial intelligence (AI) approaches in diverse African urban landscapes, this article examines the integration of formal and informal data to bolster urban resilience in Africa. It underscores the significance of this diverse data in crafting effective urban planning strategies tailored to the needs of African city-dwellers. The AI-driven analysis, amalgamating these datasets, provides a comprehensive understanding of urban realities and community needs in African cities. Additionally, the article emphasizes how harnessing so-called informal data—often overlooked yet crucial—alongside formal data enables more contextual and adaptive planning aligned with local needs and aspirations. Highlighting the transformative potential of data-driven approaches, the article presents AI strategies as proactive tools to address the challenges faced by African cities, fostering resilience amidst socio-economic and environmental shifts. Ultimately, it advocates for the integration of diverse data sources in urban planning, utilizing AI as a catalyst, underlining the importance of a holistic approach that values both formal and informal data for sustainable and resilient urban development in Africa.



    If h and k are integers with k>0, the classical Dedekind sums S(h,k) are defined as

    S(h,k)=ka=1((ak))((ahk)),

    where

    ((x))={x[x]12,if x is not an integer; 0,if x is an integer. 

    The various properties of S(h,k) were investigated by many authors, one of which is reciprocity theorem (see Tom M. Apostol [1] or L. Carlitz [2]). That is, for all positive integers h and k with (h,k)=1, we have the identity

    S(h,k)+S(k,h)=h2+k2+112hk14.

    Conrey et al. [3] studied the mean value distribution of S(h,k) and deduced the important asymptotic formula

    kh=1|S(h,k)|2m=fm(k)(k12)2m+O((k95+k2m1+1m+1)log3k),

    where kh=1 denotes the summation over all h such that (h,k)=1 and

    n=1fm(n)ns=2ζ2(2m)ζ(4m)ζ(s+4m1)ζ2(s+2m)ζ(s).

    Moreover, X. L. He and W. P. Zhang [4] gave an interesting asymptotic formula for the Dedekind sums with a weight of Hurwitz zeta-function as follows:

    kh=1ζ2(12,hk)S2(h,k)=k3144ζ(3)p|k(11p3)+O(k52exp(3logkloglogk)).

    Other sums analogous to the Dedekind sums are the Hardy sums. Using the notation of Berndt and Goldberg [5], they defined

    S1(h,k)=k1j=1(1)j+1+[hjk],

    where h and k are integers with k>0.

    In 2014, H. Zhang and W. P. Zhang [6] obtained some beautiful identities involving S1(h,k) in the forms of

    p1m=1p1n=1K(m,p)K(n,p)S1(2m¯n,p),
    p1m=1p1n=1|K(m,p)|2|K(n,p)|2S1(2m¯n,p),

    where K(n,p) denotes the reduced form of the general Kloosterman sums attached to a Dirichlet character λ modulo k as

    K(r,l,λ;k)=ka=1λ(a)e(ra+l¯ak),

    where e(x)=e2πix, ¯a denotes the solution of the congruence xa1modk.

    Recently, H. F. Zhang and T. P. Zhang [7] extended the results in [6] to a more general situation as

    p1m=1p1n=1K(m,s,λ;p)¯K(n,t,λ;p)S1(2m¯n,p),
    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S1(2m¯n,p),

    where ¯K(n,t,λ;p) denotes complex conjugate of K(n,t,λ;p).

    Actually there are six forms of Hardy sums (see Berndt [8] and Goldberg [9]). A natural question is whether we can obtain similar results by replacing S1(h,k) with other forms of Hardy sums. Due to some technical reasons, for most of other forms of Hardy sums, the answer is no! Thanks to the important relationships among Hardy sums and Dedekind sums built by R. Sitaramachandrarao [10], we are lucky to find the only one S3(h,p) to replace, with

    S3(h,k)=kj=1(1)j((hjk)).

    Our starting point relies heavily on the following in [10] as:

    Proposition 1. Let k be an odd positive integer, h be an integer with (h,k)=1. Then

    S3(h,k)=2S(h,k)4S(2h,k).

    Then applying the properties of Gauss sums and the mean square value of Dirichlet L-functions, we have

    Theorem 1. Let p be an odd prime. Then for any Dirichlet character λmodp and any integer s, t with (s,p)=(t,p)=1, we have

    p1m=1p1n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)={p12,if ¯λχ=χ0;p(p1)2,if ¯λχχ0,

    where χ is an odd Dirichlet character modulo p and χ0 is the principal character modulo p.

    Theorem 2. Let p be an odd prime with p1mod4. Then for any Dirichlet character λmodp and any integer s, t with (s,p)=(t,p)=1, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p1)2,if ¯λχχ0, ¯λχχ0;=p(p1)2,if ¯λχχ0, ¯λχ=χ0;p92+12p44p72p3+5p52+p22p3212p,if ¯λχ=χ0, ¯λχ=χ0;p53p4+3p312p212p,if ¯λχ=χ0, ¯λχχ0.

    Theorem 3. Let p be an odd prime with p3mod8. Then for any Dirichlet character λmodp and any integer s, t with (s,p)=(t,p)=1, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p1)26p2h2p,if ¯λχχ0, ¯λχχ0;=p(p1)26ph2p,if ¯λχχ0, ¯λχ=χ0;p92+12p44p72p3+5p52+p22p3212p+6p2h2p,if ¯λχ=χ0, ¯λχ=χ0;p53p4+3p312p212p+6p3h2p,if ¯λχ=χ0, ¯λχχ0,

    where hp denotes the class number of the quadratic field Q(p).

    Theorem 4. Let p be an odd prime with p7mod8. Then for any Dirichlet character λmodp and any integer s, t with (s,p)=(t,p)=1, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p){=p2(p1)2+2p2h2p,if ¯λχχ0, ¯λχχ0;=p(p1)2+2ph2p,if ¯λχχ0, ¯λχ=χ0;p92+12p44p72p3+5p52+p22p3212p+2p2h2p,if ¯λχ=χ0, ¯λχ=χ0;p53p4+3p312p212p+2p3h2p,if ¯λχ=χ0, ¯λχχ0.

    Taking λ=λ0, s=t=1 in Theorems 1–4, we immediately deduce the following results.

    Corollary 1. Let p be an odd prime. Then we have the identity

    p1m=1p1n=1K(m,p)K(n,p)S3(m¯n,p)=p(p1)2.

    Corollary 2. Let p be an odd prime. Then we have

    p1m=1p1n=1|K(m,p)|2|K(n,p)|2S3(m¯n,p)={p2(p1)2,if p1mod4;p2(p1)26p2h2p,if p3mod8;p2(p1)2+2p2h2p,if p7mod8.

    To prove the Theorems, we need the following Lemmas.

    Lemma 1. Let k>2 be an integer. Then for any integer a with (a,k)=1, we have the identity

    S(a,k)=1π2kdkd2ϕ(d)χmoddχ(1)=1χ(a)|L(1,χ)|2,

    where L(1,χ) denotes the Dirichlet L-function corresponding to Dirichlet character χ mod d.

    Proof. See Lemma 2 of [11].

    Lemma 2. Let p be an odd prime, s be any integer with (s,p)=1. Then for any non-principal character χmodp and any Dirichlet character λmodp, we have

    |p1m=1χ(m)K(m,s,λ;p)|={p12,if ¯λχ=χ0;p,if ¯λχχ0.

    Proof. See Lemma 2 of reference [7].

    Lemma 3. Let p be an odd prime, s be any integer with (s,p)=1. Then for any non-principal character χmodp and any Dirichlet character λmodp, we have

    |p1m=1χ(m)|K(m,s,λ;p)|2|={p|τ(¯χ2)|,if ¯λχχ0, ¯λχχ0;p12|τ(¯χ2)|,if ¯λχχ0, ¯λχ=χ0;p|τ(¯χ2)+(p1)|,if ¯λχ=χ0, ¯λχ=χ0;p|τ(¯χ2)τ(¯λχ)+(p1)|,if ¯λχ=χ0, ¯λχχ0,

    where τ(χ)=pa=1χ(a)e(ap) denotes the classical Gauss sums.

    Proof. See Lemma 1 of reference [7].

    Lemma 4. Let p be an odd prime, then we have

    χmodpχ(1)=1|L(1,χ)|2=π212(p1)2(p2)p2,
    χmodpχ(1)=1χ(2)|L(1,χ)|2=π224(p1)2(p5)p2.

    Proof. See Lemma 5 of reference [6].

    Now we come to prove our Theorems.

    Firstly, we prove Theorem 1. Applying Proposition 1 and Lemma 1, we obtain

    p1m=1p1n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2pπ2(p1)χmodpχ(1)=1p1m=1χ(m)K(m,s,λ;p)p1n=1χ(¯n)¯K(n,t,λ;p)|L(1,χ)|24pπ2(p1)χmodpχ(1)=1χ(2)p1m=1χ(m)K(m,s,λ;p)p1n=1χ(¯n)¯K(n,t,λ;p)|L(1,χ)|2=2pπ2(p1)χmodpχ(1)=1|p1m=1χ(m)K(m,s,λ;p)|2|L(1,χ)|24pπ2(p1)χmodpχ(1)=1χ(2)|p1m=1χ(m)K(m,s,λ;p)|2|L(1,χ)|2.

    Then from Lemma 2 and Lemma 4, if ¯λχ=χ0, we have

    p1m=1p1n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2p2π2(p1)χmodpχ(1)=1|L(1,χ)|24p2π2(p1)χmodpχ(1)=1χ(2)|L(1,χ)|2=2p2π2(p1)π212(p1)2(p2)p24p2π2(p1)π224(p1)2(p5)p2=p12.

    While if ¯λχχ0, we have

    p1m=1p1n=1K(m,s,λ;p)¯K(n,t,λ;p)S3(m¯n,p)=2p3π2(p1)χmodpχ(1)=1|L(1,χ)|24p3π2(p1)χmodpχ(1)=1χ(2)|L(1,χ)|2=2p3π2(p1)π212(p1)2(p2)p24p3π2(p1)π224(p1)2(p5)p2=p(p1)2.

    This completes the proof of Theorem 1.

    Then we prove Theorem 2. From Proposition 1 and Lemma 1, we obtain

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2pπ2(p1)χmodpχ(1)=1|p1m=1χ(m)|K(m,s,λ;p)|2|2|L(1,χ)|24pπ2(p1)χmodpχ(1)=1χ(2)|p1m=1χ(m)|K(m,s,λ;p)|2|2|L(1,χ)|2.

    Since p1mod4, and notice that |τ(¯χ2)|=p. From Lemma 3 and Lemma 4, if ¯λχχ0, ¯λχχ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p4π2(p1)χmodpχ(1)=1|L(1,χ)|24p4π2(p1)χmodpχ(1)=1χ(2)|L(1,χ)|2=2p4π2(p1)π212(p1)2(p2)p24p4π2(p1)π224(p1)2(p5)p2=p2(p1)2.

    Similarly, if ¯λχχ0, ¯λχ=χ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p1)2.

    If ¯λχ=χ0, ¯λχ=χ0, we can obtain

    |p1m=1χ(m)|K(m,s,λ;p)|2|2=p2[(Re τ(¯χ2)+(p1))2+(Im τ(¯χ2))2]=p2[p+2(p1)Re τ(¯χ2)+(p1)2].

    So we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p3π2(p1)χmodpχ(1)=1[p+2(p1)Re τ(¯χ2)+(p1)2]|L(1,χ)|24p3π2(p1)χmodpχ(1)=1χ(2)[p+2(p1)Re τ(¯χ2)+(p1)2]|L(1,χ)|2=2p3[p+(p1)2]π2(p1)χmodpχ(1)=1|L(1,χ)|2+4p3π2χmodpχ(1)=1Re (τ(¯χ2))|L(1,χ)|24p3[p+(p1)2]π2(p1)χmodpχ(1)=1χ(2)|L(1,χ)|28p3π2χmodpχ(1)=1χ(2)Re (τ(¯χ2))|L(1,χ)|2=p(p1)(p2p+1)2+4p3π2χmodpχ(1)=1Re (τ(¯χ2))|L(1,χ)|28p3π2χmodpχ(1)=1χ(2)Re (τ(¯χ2))|L(1,χ)|2.

    Noting that x|x| holds for any real number x, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)|p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)|p(p1)(p2p+1)2+4p72π2χmodpχ(1)=1|L(1,χ)|2+8p72π2χmodpχ(1)=1|L(1,χ)|2=p(p1)(p2p+1)2+4p72π2π212(p1)2(p2)p2+8p72π2π212(p1)2(p2)p2=p92+12p44p72p3+5p52+p22p3212p.

    Similarly, if ¯λχ=χ0, ¯λχχ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)p53p4+3p312p212p.

    This completes the proof of Theorem 2.

    Next we turn to prove Theorem 3. Since p3mod4, note that (1p)=χ2(1)=1, L(1,χ2)=πhpp, and τ(¯χ22)=1. From Lemma 3 and Lemma 4, if ¯λχχ0, ¯λχχ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p4π2(p1)χmodpχ(1)=1|L(1,χ)|22p4π2(p1)|L(1,χ2)|2+2p3π2(p1)|L(1,χ2)|24p4π2(p1)χmodpχ(1)=1χ(2)|L(1,χ)|2+4p4π2(p1)χ2(2)|L(1,χ2)|24p3π2(p1)χ2(2)|L(1,χ2)|2=p2(p1)22p3π2|L(1,χ2)|2+4p3π2χ2(2)|L(1,χ2)|2=p2(p1)22p2h2p+4p2h2p(2p).

    Similarly, if ¯λχχ0, ¯λχ=χ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p1)22ph2p+4ph2p(2p).

    If ¯λχ=χ0, ¯λχ=χ0, we can obtain

    p2|τ(¯χ22)+(p1)|2=p2[1+2(p1)Re τ(¯χ22)+(p1)2].

    So we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=2p3π2(p1)χmodpχ(1)=1[p+2(p1)Re τ(¯χ2)+(p1)2]|L(1,χ)|22p3π2(p1)[p+2(p1)Re τ(¯χ22)+(p1)2]|L(1,χ2)|2+2p3π2(p1)[1+2(p1)Re τ(¯χ22)+(p1)2]|L(1,χ2)|24p3π2(p1)χmodpχ(1)=1χ(2)[p+2(p1)Re τ(¯χ2)+(p1)2]|L(1,χ)|2+4p3π2(p1)[p+2(p1)Re τ(¯χ22)+(p1)2]χ2(2)|L(1,χ2)|24p3π2(p1)[1+2(p1)Re τ(¯χ22)+(p1)2]χ2(2)|L(1,χ2)|2=p(p1)(p2p+1)2+4p3π2χmodpχ(1)=1Re (τ(¯χ2))|L(1,χ)|28p3π2χmodpχ(1)=1χ(2)Re (τ(¯χ2))|L(1,χ)|22p2h2p+4p2h2p(2p).

    Similarly, if ¯λχ=χ0, ¯λχχ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p1)(2p22p+1)24p3π2χmodpχ(1)=1Re (τ(¯χ2)τ(¯λχ))|L(1,χ)|2+8p3π2χmodpχ(1)=1χ(2)Re (τ(¯χ2)τ(¯λχ))|L(1,χ)|22p3h2p+4p3h2p(2p).

    Combining the fact that

    (2p)=(1)p218={1,if p±1mod8;1,if p±3mod8,

    we deduce that if p3mod8, then

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)={p2(p1)26p2h2p,if ¯λχχ0, ¯λχχ0;p(p1)26ph2p,if ¯λχχ0, ¯λχ=χ0.

    If ¯λχ=χ0, ¯λχ=χ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)=p(p1)(p2p+1)2+4p3π2χmodpχ(1)=1Re (τ(¯χ2))|L(1,χ)|28p3π2χmodpχ(1)=1χ(2)Re (τ(¯χ2))|L(1,χ)|26p2h2p.

    Then

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)p(p1)(p2p+1)2+4p3π2|χmodpχ(1)=1Re (τ(¯χ2))|L(1,χ)|2|+8p3π2|χmodpχ(1)=1χ(2)Re (τ(¯χ2))|L(1,χ)|2|+6p2h2p=p92+12p44p72p3+5p52+p22p3212p+6p2h2p.

    Similarly, if ¯λχ=χ0, ¯λχχ0, we have

    p1m=1p1n=1|K(m,s,λ;p)|2|K(n,t,λ;p)|2S3(m¯n,p)p53p4+3p312p212p+6p3h2p.

    This completes the proof of Theorem 3.

    Theorem 4 can be derived by the same method. This completes the proof of our Theorems.

    In this paper, we obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums and Kloosterman sums (both classical Kloosterman sums and general Kloosterman sums) by applying the properties of Gauss sums and the mean value of Dirichlet L-function. But in some cases, unluckily, it is difficult to get the exact formula. So how to get the exact formula in all cases remains open.

    The authors want to show their great thanks to the anonymous referee for his/her helpful comments and suggestions.

    This work is supported by the National Natural Science Foundation of China (No. 11871317, 11926325, 11926321) and the Fundamental Research Funds for the Central Universities (No. GK201802011).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] La Banque Mondiale (2017) Rapport sur l'urbanisation en Afrique : pour soutenir la croissance il faut améliorer la vie des habitants et des entreprises dans les villes. Available from: https://www.banquemondiale.org/fr/news/press-release/2017/02/09/world-bank-reportimproving-conditions-for-people-and-businesses-in-africas-cities-is-key-to-growth.
    [2] Vidzraku S (2018) En Afrique, le taux de pénétration des smartphones atteindra 70% en 2024. Available from: https://afrique.latribune.fr/africa-tech/telecoms/2018-12-02/en-afrique-le-taux-de-penetration-des-smartphones-atteindra-70-en-2024-799538.html.
    [3] Ater A (2017) Le Nigeria abrite la première unité de fabrication de smartphones d'Afrique. Available from: https://afrique.latribune.fr/africa-tech/telecoms/2017-04-23/le-nigeria-abrite-la-premiere-unite-de-fabrication-de-smartphones-d-afrique.html.
    [4] Ndaw MF (2015) Étude sur la valorisation du potentiel des TIC dans le secteur Eau, Assainissement et Hygiène. Résumé des conclusions et recommandations. Available from: https://fr.readkong.com/page/tude-sur-la-valorisation-du-potentiel-des-tic-dans-le-8372355.
    [5] Marot C (2014) Smartphones et «big data » au service des citadins africains. Available from: https://www.jeuneafrique.com/7908/economie-entreprises/smartphones-et-big-data-au-service-des-citadins-africains.
    [6] Damome E (2018) Opportunités et difficultés du développement des archives ouvertes pour la communication publique: La situation en Afrique subsaharienne. Revue Française Des Sci I'information Et De La Commun 2018. https://doi.org/10.4000/rfsic.3491 doi: 10.4000/rfsic.3491
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1746) PDF downloads(44) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog