This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([
Citation: Zuliang Lu, Fei Cai, Ruixiang Xu, Lu Xing. Convergence and proposed optimality of adaptive finite element methods for nonlinear optimal control problems[J]. AIMS Mathematics, 2022, 7(11): 19664-19695. doi: 10.3934/math.20221079
[1] | Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani . Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control. Mathematical Biosciences and Engineering, 2024, 21(4): 5207-5226. doi: 10.3934/mbe.2024230 |
[2] | Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024 |
[3] | Kaushik Dehingia, Anusmita Das, Evren Hincal, Kamyar Hosseini, Sayed M. El Din . Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses. Mathematical Biosciences and Engineering, 2023, 20(11): 20025-20049. doi: 10.3934/mbe.2023887 |
[4] | Balázs Csutak, Gábor Szederkényi . Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006 |
[5] | Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785 |
[6] | Mengya Huang, Anji Yang, Sanling Yuan, Tonghua Zhang . Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering, 2023, 20(2): 4219-4242. doi: 10.3934/mbe.2023197 |
[7] | Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401 |
[8] | Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145 |
[9] | Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329 |
[10] | Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259 |
This paper investigates the adaptive finite element method for nonlinear optimal control problem, and the research content of reference ([
In the past decade, information technology has gotten a rapid development, and is playing an important role in industry, commerce and humans' daily life. Computers, the most primary carriers of the advanced technique, are the requisite hardware of the modern science. However, computers have to face the threaten of worm and virus which are the biggest menace to the normal operation[16,14]. Generally, the operators do not know the existence of the computer worm, least of all how and when their computers have been infected. Worm and virus are always attached to a junk mail, masqueraded as innocent files for downloading, even ensconced in a code spreading through the Internet[5]. The dissemination of the worm and virus only needs someone to open the host file, then the worm and virus can transmit automatically without any additional operation[30]. Up to now, computer worm and virus can averagely cause billions of economic damage every year. To the operators, the direct results caused by infectious, such as causing system collapse, occupying computer RAM and demolishing existence data etc, always make them pay a heavy price. In response, updating antivirus software and patching operating system are two primary protections.
Recently, some researchers described the transmission and prevention of computer worm and virus with the state feedback compulsive model, and they have got some interesting results[7,12,27]. In their models, when the number of infected computers reaches a certain level the impulsive control will be triggered. Then new antivirus software will be published and installed, operating system will be patched to the latest version. All those activities happened instantaneously, and they are depicted as an impulse in the model.
However, the published researches all assume the diffusion of worm and virus is linear with the number of infected and susceptible computers which goes against the truth. In fact, at the initial period of a certain transmission, among the huge number of healthy computers connected with the Internet, only few of them have the opportunity to touch the virus[9,22,31]. And following the development, the infectious rate can not keep being linear with the infected and susceptible ones if the infected computers are numerically superior. So it is proper to describe the infectious with saturated transmission, and we will study the impulsive control of computer virus under this spreading fashion.
The remaining of this paper is arranged as follows: we set up the model and introduce some preliminaries in section 2; the existence, uniqueness and stability of order-1 limit cycle are analyzed in section 3; finally, some numerical simulation are showed to confirm the result and some deeper discussion is carried out in section 4.
Enlightened by the development in the field of impulsive control and the progress of infectious disease study [19,29,25,26], all the computers connected with the Internet are divided into two disjoint groups:
Considering objectively, we make the following assumptions:
(1) all the new emerging computers are susceptible ones, and the rate is
(2) rejection rate is not affected by the computer worm and virus, and both suceptibles and infectives are sifted out from the Internet at rate
(3) the transmission incidence is
(4)
When infectives is less than
{dSdt=K−βSI1+αS−μS,dIdt=βSI1+αS−μI,I<ˉI, ΔS=−σ1S, ΔI=−σ2I,I=ˉI. | (1) |
Considering the practical significance, all the parameters in this paper are positive,
In the reminder part of this section, we introduce some definitions and lemmas to support the proof of the existence and stability of the order-1 limit cycle of system (1).
Definition 2.1 (19-25) A typical state feedback impulsive differential model can be defined as
{dxdt=P(x,y), dydt=Q(x,y), (x,y)∉M{x,y},Δx=α(x,y), Δy=β(x,y), (x,y)∈M{x,y}, | (2) |
and can be denoted by
Definitions of successor function and order-1 periodic solution of state feedback impulsive dynamic system are also vitally important in the research.
Definition 2.2. [2,21,15] Simply suppose the impulse set
Remark 1. The necessary and sufficient condition that the solution passing point
Lemma 2.3. [2,21,15] To a state feedback impulsive dynamic system
Without counting the impulsive control measure, system (1) can be simplified as
{dSdt=K−βSI1+αS−μS,dIdt=βSI1+αS−μI, | (3) |
system (3) is called uncontrolled system of (1). Change the variables with linear transform
{dSdt=−βSI+(K−μS)(1+αS),dIdt=βSI−μI(1+αS). | (4) |
It is obvious that system (4) has two equilibria
S∗=μβ−μα and I∗=(K−μS∗)(1+αS∗)βS∗=Kμ−μβ−μα. |
β>μ2K+μα. | (5) |
In the following discussions, we assume condition (5) is satisfied consistently. The Jacobian matrix of
JE1=(−μ−αK−βKμ0βKμ−μ−αK), |
JE2=(−Kμ(β−μα)−αμ2β−μα−βμβ−μαKμ(β−μα)−μ0). |
Assume
λ1+λ2=−Kμ(β−μα)−αμ2β−μα<0 and λ1⋅λ2=βμβ−μα(Kμ(β−μα)−μ)>0, |
so
In this part, we will consider the uniform boundedness in the first quadrant. From system (4), we can find that
I=−μαβS+Kβ1S+Kα−μβ |
is vertical isoclinic line, and
S=μβ−μα and I=0 |
are horizontal isoclinic lines.
Following the succeeded statement, we select a piece of bounded region (see Fig. 3). Designate a line
Assume
dφdt=dIdt−adSdt=(1+a)aβ⋅x2+[bβ(1+a)−α(aK+bμ)]⋅x−(aK+bμ). | (6) |
Set
Assume Dulac function
{dSdt=−βSI+(K−μS)(1+αS)Δ=P(S,I),dIdt=βSI−μI(1+αS)Δ=Q(S,I), | (7) |
then
{dSdt=u(S,I)P(S,I)=−βSI+(K−μS)(1+αS)Δ=P1(S,I),dIdt=u(S,I)Q(S,I)=βSI−μI(1+αS)Δ=Q1(S,I). | (8) |
It is obvious that
Basing on the above discussion, if condition (5) is satisfied, then there exists only one positive equilibrium
In this section, we will certificate the existence and uniqueness of order-1 limit cycle of system (1). In reality, it is unreasonable that a single kind of computer virus lasts for long time without being detected. So we assume
The existence of order-1 limit cycle is studied in this subsection.
Theorem 4.1. If condition (5) holds, for any
Proof. In system (1), to any
Assume the intersection of imagine set
Case of
Case of
Basing on the above discussion, to any
Since the order-1 periodic solution is isolated, its trajectory and the proper impulsive line can form order-1 limit cycle of system(1).
In this part we prove the uniqueness of the order-1 limit cycle with the homogeneous of successor function.
Theorem 4.2. The order-1 limit cycle of system (1) is unique.
Proof. Select two points
The above content has proved the existence and uniqueness of order-1 limit cycle. In this subsection, we discuss the stability of the order-1 limit cycle of system (1). Unlike the case of continuous dynamic system, the stability proof of impulsive dynamic system is quite complex. Some definition and lemma which are significant in the proof will be illustrated first.
Definition 4.3. [24] The order-1 limit cycle
Basing on the theorem of subsection 4.1 and 4.2, to any
S0,S1,⋯,Sk,Sk+1,⋯, |
where
sk={−dk,Sk is on left side of A,dk,Sk is on right side of A, |
where
Lemma 4.4. [24] Denote the mapping of the general impulsive dynamic system (2) as
|dˉsds|s=0<1(>1). |
It is not easy to prove the stability of order-1 limit cycle of system (2) only with the previous lemma, so we set up an orthogonal coordinate
Without loss of generality, we assume that functions
To any point in that region, there exists a certain point in the closed orbit
x=ϕ(s),y=ψ(s), | (9) |
where
Then the rectangular coordinate
x=ϕ(s)−nψ′(s),y=ψ(s)+nϕ′(s), | (10) |
Following (2) and (10), we have
dnds=Qϕ′−Pψ′−n(Pϕ″+Qψ″)Pϕ′+Qψ′Δ=F(s,n). | (11) |
It is apparent that
dnds=Fn′(s,n)|n=0⋅n+o(n). | (12) |
Following (11), we can calculate
Fn′(s,n)|n=0=P20Qy0−P0Q0(Py0+Qx0)+Q20Px0(P20+Q20)32Δ=H(s), |
where
dnds=H(s)n, | (13) |
and its solution is
n=n0e∫T0H(s′)ds′,n0=n(0). | (14) |
Theorem 4.5. Assume
∫h0H(s)ds<0(>0). |
Theorem 4.6. Suppose the region closed by order-1 periodic solution
The proofs of Theorem 4.5 and Theorem 4.6 are similar with that in [27], and omitted here.
Then we can draw the corollary naturally.
Corollary 1. Suppose the area closed by order-1 limit cycle
In this section, we present and discuss a special example to check the theoretical results in section 3 and section 4.
The uncontrolled part of system (1) is numerically calculated with fourth-order Runge-Kutta of Matlab software package. In the following, we discuss the solution of system (1), considering the parameters
From Fig. (10), it is obvious that system (1) has an order-1 limit cycle with the parameters mentioned above. We can also find that the limit cycle forms soon after the trajectory initiate from the original point which means that the impulsive patching and updating of antivirus software is quite effective. During the first period of the transmission, the worm or the virus spreads freely, the number represents susceptible computers decreases rapidly and the number stands for the infectious ones increased sharply. The developing trend of
We would like to sincerely thank the reviewers for their careful reading and constructive opinions of the original manuscript. This work is supported by NSFC(No.11671346, No.61751317, No.11701026), the Twin Tower Excellent Teacher supporting program (BUCEA2016) and the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (X18225, X18080) for M. Zhang. M. Zhang would like to thank the China Scholarship Council for financial support of her overseas study(No.201808110071).
[1] |
D. Braess, C. Carstensen, R. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math., 107 (2007), 455–471. http://doi.org/10.1007/s00211-007-0098-6 doi: 10.1007/s00211-007-0098-6
![]() |
[2] |
P. Binev, W. Dahmen, R. Devore, Adaptive finite element methods with convergence rates, Numer. Math., 97 (2004), 219–268. https://doi.org/10.1007/s00211-003-0492-7 doi: 10.1007/s00211-003-0492-7
![]() |
[3] |
I. Babu˘ska, W. Rheinboldt, Error estimates for adaptive finite computations, SIAM J. Numer. Anal., 15 (1978), 736–754. https://doi.org/10.1137/0715049 doi: 10.1137/0715049
![]() |
[4] |
J. Cascon, C. Kreuzer, R. Nochetto, K. Siebert, Qusi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), 2524–2550. https://doi.org/10.1137/07069047X doi: 10.1137/07069047X
![]() |
[5] |
Y. Chen, Z. Lu, R. Guo, Error estimates of triangular mixed finite element methods for quasilinear optimal control problems, Front. Math. China, 7 (2012), 397–413. https://doi.org/10.1007/s11464-012-0179-4 doi: 10.1007/s11464-012-0179-4
![]() |
[6] | P. Ciarlet, The finite element method for elliptic problems, Amsterdam: North-Holland, 1978. |
[7] |
A. Demlow, R. Stevenson, Convergence and quasi-optimlity of an adaptive finite element method for controlling L2 errors, Numer. Math., 117 (2011), 185–218. https://doi.org/10.1007/s00211-010-0349-9 doi: 10.1007/s00211-010-0349-9
![]() |
[8] |
M. Dobrowolski, R. Rannacher, Finite element methods for nonlinear elliptic systems of second order, Math. Nach., 94 (1980), 155–172. https://doi.org/10.1002/mana.19800940112 doi: 10.1002/mana.19800940112
![]() |
[9] |
W. D¨orfler, A convergent adaptive algorithm for Poisson equation, SIAM J. Numer. Anal., 33 (1996), 1106–1124. https://doi.org/10.1137/0733054 doi: 10.1137/0733054
![]() |
[10] |
X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313–355. https://doi.org/10.1007/s00211-008-0169-3 doi: 10.1007/s00211-008-0169-3
![]() |
[11] |
K. Eriksson, C. Johnson, An adaptive finite element method for linear elliptic problems, Math. Comp., 50 (1988), 361–383. https://doi.org/10.1090/S0025-5718-1988-0929542-X doi: 10.1090/S0025-5718-1988-0929542-X
![]() |
[12] |
K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems IV: nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729–1749. https://doi.org/10.1137/0732078 doi: 10.1137/0732078
![]() |
[13] | A. Gaevskaya, R. Hoppe, Y. llish, M. Kieweg, Convergence analysis of an adaptive finite element method for distributed control problems with control constrains, In: Control of coupled partial differential equations, Basel: Birkhäuser, 2007, 47–68. https://doi.org/10.1007/978-3-7643-7721-2_3 |
[14] | L. Ge, W. Liu, D. Yang, L2 norm equivalent a posteriori error estimate for a constrained optimal control problem, Int. J. Numer. Anal. Mod., 6 (2009), 335–353. |
[15] |
L. Ge, W. Liu, D. Yang, Adaptive finite element approximation for a constrained optimal control problem via multi-grids, J. Sci. Comput., 41 (2009), 238. https://doi.org/10.1007/s10915-009-9296-y doi: 10.1007/s10915-009-9296-y
![]() |
[16] |
W. Gong, N. Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality, Numer. Math., 135 (2017), 1121–1170. https://doi.org/10.1007/S00211-016-0827-9 doi: 10.1007/S00211-016-0827-9
![]() |
[17] |
J. Hu, J. Xu, Convergence and optimality of the adaptive nonconforming linear element method for the stokes problem, J. Sci. Comput., 55 (2013), 125–148. http://doi.org/10.1007/s10915-012-9625-4 doi: 10.1007/s10915-012-9625-4
![]() |
[18] |
H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on L2-errors, J. Sci. Comput., 73 (2017), 438–458. https://doi.org/10.1007/s10915-017-0425-8 doi: 10.1007/s10915-017-0425-8
![]() |
[19] |
H. Leng, Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint, Adv. Comput. Math., 44 (2018), 367–394. https://doi.org/10.1007/s10444-017-9546-8 doi: 10.1007/s10444-017-9546-8
![]() |
[20] | J. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer, 1971. |
[21] |
R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), 1321–1349. https://doi.org/10.1137/S0363012901389342 doi: 10.1137/S0363012901389342
![]() |
[22] | W. Liu, N. Yan, Adaptive finite element methods for optimal control governed by PDEs, Beijing: Science Press, 2008. |
[23] |
Z. Lu, Y. Chen, W. Zheng, A posteriori error estimates of lowest order Raviart-Thomas mixed finite element methods for bilinear optimal control problems, East Asian J. Appl. Math., 2 (2012), 108–125. https://doi.org/10.4208/eajam.080212.260312a doi: 10.4208/eajam.080212.260312a
![]() |
[24] |
Z. Lu, Existence and uniqueness of second order parabolic bilinear optimal control problems, Lobachevskii J. Math., 32 (2011), 320–327. https://doi.org/10.1134/S1995080211040135 doi: 10.1134/S1995080211040135
![]() |
[25] |
P. Morin, R. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), 466–488. https://doi.org/10.1137/S0036142999360044 doi: 10.1137/S0036142999360044
![]() |
[26] |
W. Shen, D. Yang, W. Liu, Optimal control problem governed by a linear hyperbolic integro-differential equation and its finite element analysis, Bound. Value Probl., 2014 (2014), 173. https://doi.org/10.1186/s13661-014-0173-8 doi: 10.1186/s13661-014-0173-8
![]() |
[27] |
R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), 245–269. https://doi.org/10.1007/s10208-005-0183-0 doi: 10.1007/s10208-005-0183-0
![]() |
[28] | R. Verfürth, A review of a posteriori error estimation and adaptive Grids-Refinement techniques, Wiley, 1998. |
[29] | P. Wriggers, O. Scherf, An adaptive finite element technique for nonlinear contact problems, In: Contact mechanics, Boston, MA: Springer, 1995,183–194. https://doi.org/10.1007/978-1-4615-1983-6_24 |
[30] |
J. Xu, A. Zhou, Local and parallel finite element algorithms based on two-grids discretizations, Adv. Comput. Math., 14 (2001), 293–327. https://doi.org/10.1023/A:1012284322811 doi: 10.1023/A:1012284322811
![]() |
[31] | D. Yang, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26 (2008), 471–487. |
1. | Qingyi Zhu, Pingfan Xiang, Xuhang Luo, Chenquan Gan, Mamoun Alazab, Dynamical Behavior of Hybrid Propagation of Computer Viruses, 2022, 2022, 1939-0122, 1, 10.1155/2022/2576685 | |
2. | 秀秀 王, Impulsive State Feedback Control Model of Predator Population with Constant Release Rate in Polluted Water, 2022, 11, 2324-7991, 7302, 10.12677/AAM.2022.1110775 | |
3. | Tieying Wang, Microbial insecticide model and homoclinic bifurcation of impulsive control system, 2021, 14, 1793-5245, 2150043, 10.1142/S1793524521500431 | |
4. | Wenjie Li, Jinchen Ji, Lihong Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, 2022, 359, 00160032, 10628, 10.1016/j.jfranklin.2022.09.030 | |
5. | 烁烁 王, Study on the Second Model of State Feedback Impulsive Model of Red Squirrel Protection, 2021, 10, 2324-7991, 3640, 10.12677/AAM.2021.1011385 | |
6. | Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2022, 1556-5068, 10.2139/ssrn.4012957 | |
7. | Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2023, 49, 1017-060X, 10.1007/s41980-023-00834-z |