Processing math: 100%
Review Special Issues

Impact of Physical Activity on Frailty Status and How to Start a Semiological Approach to Muscular System

  • Introduction: The world population is aging, and this demographic fact is associated with an increased prevalence of sedentary lifestyles, sarcopenia and frailty; all of them with impact on health status. Biologic reserve determination in the elderly with comorbidity poses a challenge for medical activities. Frailty is an increasingly used concept in the geriatric medicine literature, which refers to an impairment in biologic reserve. There is a close and multidirectional relationship between physical activity, the muscular system function, and a fit status; decline in this dimensions is associated with poor outcomes. The aim of this article is to make a narrative review on the relationship between physical activity, sarcopenia and frailty syndrome. Results: The low level of physical activity, sarcopenia and frailty, are important predictors for development of disability, poor quality of life, falls, hospitalizations and all causes mortality. For clinical practice we propose a semiological approach based on measurement of muscle performance, mass and also level of physical activity, as a feasible way to determine the biologic reserve. This evidence shows us that the evaluation of muscle mass and performance, provides important prognostic information because the deterioration of these variables is associated with poor clinical outcomes in older adults followed up in multiple cohorts. Conclusions: Low activity is a mechanism and at the same time part of the frailty syndrome. The determination of biologic reserve is important because it allows the prognostic stratification of the patient and constitutes an opportunity for intervention. The clinician should be aware of the clinical tools that evaluate muscular system and level of physical activity, because they place us closer to the knowledge of health status.

    Citation: Maximiliano Smietniansky, Bruno R. Boietti, Mariela A. Cal, María E. Riggi, Giselle P.Fuccile, Luis A. Camera, Gabriel D. Waisman. Impact of Physical Activity on Frailty Status and How to Start a Semiological Approach to Muscular System[J]. AIMS Medical Science, 2016, 3(1): 52-60. doi: 10.3934/medsci.2016.1.52

    Related Papers:

    [1] Shenglun Yan, Wanqian Zhang, Weiyuan Zou . Multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint under a singular kernel. Networks and Heterogeneous Media, 2024, 19(2): 547-568. doi: 10.3934/nhm.2024024
    [2] Hyunjin Ahn, Woojoo Shim . Interplay of a unit-speed constraint and time-delay in the flocking model with internal variables. Networks and Heterogeneous Media, 2024, 19(3): 1182-1230. doi: 10.3934/nhm.2024052
    [3] Hyunjin Ahn, Se Eun Noh . Finite-in-time flocking of the thermodynamic Cucker–Smale model. Networks and Heterogeneous Media, 2024, 19(2): 526-546. doi: 10.3934/nhm.2024023
    [4] Hyunjin Ahn . Asymptotic flocking of the relativistic Cucker–Smale model with time delay. Networks and Heterogeneous Media, 2023, 18(1): 29-47. doi: 10.3934/nhm.2023002
    [5] Hyunjin Ahn . Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17(5): 753-782. doi: 10.3934/nhm.2022025
    [6] Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun . Effect of time delay on flocking dynamics. Networks and Heterogeneous Media, 2022, 17(5): 803-825. doi: 10.3934/nhm.2022027
    [7] Young-Pil Choi, Cristina Pignotti . Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14(4): 789-804. doi: 10.3934/nhm.2019032
    [8] J. J. P. Veerman, B. D. Stošić, A. Olvera . Spatial instabilities and size limitations of flocks. Networks and Heterogeneous Media, 2007, 2(4): 647-660. doi: 10.3934/nhm.2007.2.647
    [9] Linglong Du, Anqi Du, Zhengyan Luo . Global well-posedness of strong solution to the kinetic Cucker-Smale model with external potential field. Networks and Heterogeneous Media, 2025, 20(2): 460-481. doi: 10.3934/nhm.2025021
    [10] Matteo Novaga, Emanuele Paolini, Eugene Stepanov, Vincenzo Maria Tortorelli . Isoperimetric planar clusters with infinitely many regions. Networks and Heterogeneous Media, 2023, 18(3): 1226-1235. doi: 10.3934/nhm.2023053
  • Introduction: The world population is aging, and this demographic fact is associated with an increased prevalence of sedentary lifestyles, sarcopenia and frailty; all of them with impact on health status. Biologic reserve determination in the elderly with comorbidity poses a challenge for medical activities. Frailty is an increasingly used concept in the geriatric medicine literature, which refers to an impairment in biologic reserve. There is a close and multidirectional relationship between physical activity, the muscular system function, and a fit status; decline in this dimensions is associated with poor outcomes. The aim of this article is to make a narrative review on the relationship between physical activity, sarcopenia and frailty syndrome. Results: The low level of physical activity, sarcopenia and frailty, are important predictors for development of disability, poor quality of life, falls, hospitalizations and all causes mortality. For clinical practice we propose a semiological approach based on measurement of muscle performance, mass and also level of physical activity, as a feasible way to determine the biologic reserve. This evidence shows us that the evaluation of muscle mass and performance, provides important prognostic information because the deterioration of these variables is associated with poor clinical outcomes in older adults followed up in multiple cohorts. Conclusions: Low activity is a mechanism and at the same time part of the frailty syndrome. The determination of biologic reserve is important because it allows the prognostic stratification of the patient and constitutes an opportunity for intervention. The clinician should be aware of the clinical tools that evaluate muscular system and level of physical activity, because they place us closer to the knowledge of health status.



    Emergent dynamics in interacting multi-agent systems are frequently observed in nature. Examples include the aggregation of bacteria [39], flocking of birds and vehicular flocking [7,14,19,34], schooling of fish [20,38] and the synchronization of fireflies and pacemaker cells [1,8,21,37,43]. To more introduce related literature, we refer to [22,35,41,42]. Herein, we are primarily concerned with "flocking" in which agents exhibit ordered movements and form appropriate groups. After the work of Vicsek et al. in [40], many studies on models representing flocking have been actively conducted for decades. Among them, the Cucker–Smale model [19] has received significant attention in math and physics communities due to its dissipative and simple velocity structure. Essentially, the Cucker–Smale model is a flocking dynamic system for position and velocity based on the Newtonian sense, which is governed by

    $ {dxidt=vi,t>0,i{1,,N},dvidt=κNNj=1ψ(xixj)(vjvi),(xi(0),vi(0))=(x0i,v0i)Rd×Rd, $ (1.1)

    where $ N $ denotes the number of particles, $ \kappa $ is a nonnegative coupling strength and $ \psi $ is a communication weight. To date, there have been many works examining this system and its variants due to its dissipative structure for velocity, such as the mean-field limit [5,6,25,28,30], kinetic models [9,32], hydrodynamic descriptions [23,24,33], particle analysis [9,10,13,14,15,16,17,18], temperature field [26,31] and relativistic setting [4,5,6,27].

    Since Eq (1.1), the authors of [12] noted that several Vicsek-type models with unit-speed constraints have been actively studied concerning heading angles in math community. To give a unit-speed constraint to Eq (1.1), the authors modified the velocity coupling term Eq $ (1.1)_2 $ so that the velocity of each agent has a unit-speed constraint as follows:

    $ \psi(\|x_i-x_j\|)\left(v_j-v_i\right) \longrightarrow \psi(\|x_i-x_j\|)\left(v_j-\frac{\langle v_j, v_i\rangle v_i}{\|v_i\|^2}\right), $

    where the modified term is perpendicular to $ v_i $. Thus, they proposed the following Cucker–Smale type model with constant speed and studied its flocking dynamics:

    $ {dxidt=vi,t>0,i{1,,N},dvidt=κNNj=1ψ(xixj)(vjvj,vivivi2),(xi(0),vi(0))=(x0i,v0i)Rd×Rd. $ (1.2)

    Equation (1.2) has also been studied from several perspectives; for example, particle analysis [12], the emergence of the bi-cluster flocking in [17], multi-cluster flocking and critical coupling strength in [29], time-delay effect [11] and general digraph setting [36].

    However, because the above literature [11,12,17,29,36] were only motivated by the original Cucker–Smale model (1.1) without considering internal energy, the author of [2] noted the extension of the above model to a temperature field to describe more realistic flocking dynamics. For this, as a backbone model, the author first adopted a thermodynamic Cucker–Smale model proposed by [26,31] based on the theory of multi-temperature mixture of fluids under the space of homogeneity, which is given by the following second-order ODEs for position-velocity-temperature $ (x_i, v_i, T_i) $:

    $ dxidt=vi,t>0,i[N]:={1,,N}, $ (1.3a)
    $ dvidt=κ1NNj=1ϕ(xixj)(vjTjviTi), $ (1.3b)
    $ ddt(Ti+12vi2)=κ2NNj=1ζ(xixj)(1Ti1Tj), $ (1.3c)
    $ (xi(0),vi(0),Ti(0))=(x0i,v0i,T0i)Rd×Rd×R+{0}, $ (1.3d)

    where $ \sum_{i = 1}^{N} T_i^0 = :NT^\infty, $ $ N $ denotes the number of particles, $ \kappa_1, \kappa_2 $ are nonnegative coupling strengths and $ \psi, \zeta $ are communication weights. Then, motivated from the derivation idea of Eq (1.2), by modifying the velocity coupling term Eq (1.3a) as

    $ \phi(\|x_i-x_j\|)\left(\frac{v_j}{T_j}-\frac{v_i}{T_i}\right) \longrightarrow \phi(\|x_i-x_j\|)\left(\frac{v_j}{T_j}-\frac{\langle v_j, v_i\rangle v_i}{T_j\|v_i\|^2}\right), $

    the author suggested the following TCSUS model in terms of position-velocity-temperature $ (x_i, v_i, T_i) $:

    $ {dxidt=vi,t>0,i{1,,N},dvidt=κ1NNj=1ϕ(xixj)(vjTjvj,viviTjvi2),ddt(Ti+12vi2)=κ2NNj=1ζ(xixj)(1Ti1Tj),(xi(0),vi(0),Ti(0))=(x0i,v0i,T0i)Rd×Sd1×(R+{0}), $ (1.4)

    where $ \sum_{i = 1}^{N} T_i^0 = :NT^\infty. $ Afterward, the author immediately verified that each agent in the system (1.4) has a unit-speed. Then, from the relations,

    $ \|v_i\| = 1, \quad \frac{\langle v_j, v_i\rangle v_i}{T_j\|v_i\|^2} = \frac{\langle v_j, v_i\rangle v_i}{T_j}\quad \text{and} \quad \frac{d}{dt}\left(T_i+\frac{1}{2}\|v_i\|^2\right) = \frac{dT_i}{dt}, $

    the author simply represented the system (1.4) as follows:

    $ dxidt=vi,t>0,i{1,,N}, $ (1.5a)
    $ dvidt=κ1NNj=1ϕ(xixj)(vjvj,viviTj), $ (1.5b)
    $ dTidt=κ2NNj=1ζ(xixj)(1Ti1Tj), $ (1.5c)
    $ (xi(0),vi(0),Ti(0))=(x0i,v0i,T0i)Rd×Sd1×(R+{0}), $ (1.5d)

    where $ \sum_{i = 1}^{N} T_i^0 = :NT^\infty. $ Here, we set $ \mathbb{R}_+: = [0, \infty) $ throughout the paper and we assume that two communication weights $ \phi $, $ \zeta:\mathbb{R}_+\to \mathbb{R}_+ $ are nonnegative, locally Lipschitz continuous and monotonically decreasing and that $ \mathbb{S}^{d-1} $ is the unit $ (d-1) $-sphere isometrically embedded in $ \mathbb{R}^d $; hence,

    $ 0ϕ(r)ϕ(0)=1,(ϕ(r1)ϕ(r2))(r1r2)0,r,r1,r20,ϕ()C0,1loc(R+;R+),0ζ(r)ζ(0)=1,(ζ(r1)ζ(r2))(r1r2)0,r,r1,r20,ζ()C0,1loc(R+;R+),Sd1:={x:=(x1,,xd)|di=1|xi|2=1,}where xi is the i th component of xRd. $

    The system (1.5) was studied in terms of mono-cluster flocking and bi-cluster flocking in [2] and collision avoidance [3], but the multi-cluster flocking of system (1.5) has not been studied yet. Indeed, the multi-cluster flocking phenomenon is ubiquitous in daily life. Examples include opinion disagreement, schools of fish invaded by predators and flight multi-formation. In addition, a phenomenon in which individuals with the same characteristics gather together can be an example of the multi-cluster flocking.

    Therefore, this paper is mainly interested in the non-emergence of mono-cluster flocking in the system (1.5) under a sufficiently small coupling strength and extending the bi-cluster flocking of [2] to general multi-cluster flocking. For this, we first introduce several basic notions concerning mono- and multi-cluster flocking as follows:

    Definition 1.1. Let $ Z = \{(x_i, v_i, T_i)\}_{i = 1}^N $ be a solution to the system (1.5).

    (1) The configuration $ Z $ exhibits mono-cluster flocking if the following statements hold:

    $ (i)(Group formation)suptR+max1i,jNxi(t)xj(t)<,(ii)(Velocity alignment)limtmax1i,jNvj(t)vi(t)=0,(iii)(Temperature equilibrium)limtmax1i,jN|Tj(t)Ti(t)|=0. $

    (2) The configuration $ Z $ exhibits multi-cluster flocking if there exist $ n $ cluster groups $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ such that the following assertions hold for $ 1\leq n\leq N $:

    $ (i)|Zα|=Nα1,nα=1|Zα|=nα=1Nα=N,(ii)suptR+max1k,lNαxαk(t)xαl(t)<,limtmax1k,lNαvαk(t)vαl(t)=0,limtmax1k,lNα|Tαk(t)Tαl(t)|=0,n3,1αn,(iii)inftR+mink,lxαkxβl=,1kNα,1lNβ,1αβn. $

    Then, we are primarily concerned with the following issue:

    ● (Main issue): How can we find sufficient conditions for the non-emergence of mono-cluster flocking in the system (1.5)? Additionally, under what sufficient conditions with respect to the initial data and system parameters can mono-cluster flocking emerge in system (1.5)?

    The paper is organized as follows. Section 2 introduces several basic estimates for temperatures in system (1.5) and previous results studied in [2]. Section 3 gives a mono-cluster flocking estimate different from the previous paper [3] and proves the non-emergence of mono-cluster flocking under suitable sufficient conditions when $ \phi $ is integrable in system (1.5). Next, we describe several sufficient frameworks for the mono-cluster flocking of system (1.5) when the communication weight $ \phi $ is non-integrable. Section 4 reorganizes system (1.5) to the multi-cluster setting and derives some dissipative structures on each cluster group to demonstrate the multi-cluster flocking of system (1.5) under admissible data. Finally, Section 5 briefly summarizes the main results and discusses the remaining issues left for future work.

    Notation. Throughout the paper, we denote the following notation for brevity:

    $ =standardl2-norm,,=standard inner product,yi=i-th component ofyRd,X:=(x1,,xN),V:=(v1,,vN),T:=(T1,,TN),R+:=[0,),DZ(t):=max1i,jNzi(t)zj(t)forZ=(z1,,zN){X,V,T}. $

    This section reviews several basic results for the subsystem (1.5c) to guarantee its global well-posedness; these estimates will be crucial throughout this paper. Afterward, we introduce the previous bi-cluster flocking results of system (1.5) studied in [2].

    This subsection deals with the entropy principle, the propagation of conserved quantity, and the uniform boundedness of temperature to the subsystem (1.5c). For this, we begin with defining the entropy of system (1.5).

    Definition 2.1. [26,31] Let $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ be a solution to the system (1.5). Then, the entropy is defined as

    $ \mathcal{S}(t): = \sum\limits_{i = 1}^{N}\ln(T_i(t)) = \ln\left(\prod\limits_{i = 1}^{N}T_i(t)\right). $

    Then, we present the entropy principle and conserved temperature sum as below:

    Proposition 2.1. [26,31] Assume that $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ is a solution to the system (1.5). Then, one has the following two assertions:

    1. (Conserved temperature sum) The total sum $ \sum_{i = 1}^{N}T_i $ is conserved for $ t\geq 0 $.

    $ \sum\limits_{i = 1}^{N}T_i(t) = \sum\limits_{i = 1}^N T_i^{0} = NT^\infty. $

    2. (Entropy principle) Entropy $ \mathcal{S} $ monotonically increases for $ t\geq0 $:

    $ \frac{d\mathcal{S}}{dt} = \frac{\kappa_2}{2N}\sum\limits_{i, j = 1}^{N}\zeta(\|x_j-x_i\|)\left|\frac{1}{T_i}-\frac{1}{T_j}\right|^2\geq 0. $

    Subsequently, we offer the following uniform boundedness consisting of strictly positive lower and upper bounds for temperatures to the system (1.5):

    Proposition 2.2. [26](Uniform boundedness for temperatures) Let $ Z = \{(x_i, v_i, T_i)\}_{i = 1}^N $ be a solution to system (1.5). Then, $ \min_{1\leq i\leq N}T_i(t) $ monotonically increases and $ \max_{1\leq i\leq N}T_i(t) $ monotonically decreases in time. In other words, for $ t\geq 0 $,

    $ 0 < \min\limits_{1\leq i\leq N}T_i^{0} = :T_m^\infty\leq T_i(t) \leq \max\limits_{1\leq i\leq N}T_i^{0} = :T_M^\infty, \quad i = 1, \cdots, N. $

    Since Proposition 2.2 holds, $ \phi, \zeta $ are uniformly bounded, and the speed of each agent is unit. We directly obtain the well-posedness of system (1.5) from the standard Cauchy–Lipschitz theory.

    This subsection introduces the previous mono-cluster flocking and bi-cluster flocking estimated in [2]. First, we revisit the following mono-cluster flocking of the system (1.5) verified in [3]:

    Proposition 2.3. [2] (Mono-cluster flocking) Suppose that $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ is a global-in-time solution to the system (1.5) with the initial data $ \{(x_i^{0}, v_i^{0}, T_i^{0})\}_{i = 1}^N $ and assume that there exists a positive constant $ D_{X}^\infty > 0 $ that satisfies

    $ D2V(0)<Tmϕ(DX)2TMandDX(0)+2TMDV(0)κ1ϕ(DX)<DX. $ (2.1)

    Then, we get that for $ t\in \mathbb{R}_+ $,

    $ D2V(t)<2D2V(0)andDX(t)<DX, $

    which yields the following mono-cluster flocking estimate of system (1.5) for $ t\in \mathbb{R}_+ $:

    $ D_V(t)\leq D_V(0)\exp\left(-\frac{\kappa_1\phi(D_X^\infty)}{2T_M^\infty}\right), \quad D_T(t)\leq D_T(0)\exp\left(-\frac{\kappa_2\zeta(D_X^\infty)}{(T_M^\infty)^2}t\right). $

    However, in Theorem 3.1, we can attain another mono-cluster flocking dynamics of system (1.5) by reducing the higher-order dissipative differential inequality in terms of velocity in Proposition 3.1 to a suitable lower-order inequality.

    Subsequently, to describe the results of extending the mono-cluster flocking of Proposition 2.3 to bi-cluster flocking, we describe the admissible set $ (\mathcal {H}) $ proposed in [2]; for two cluster groups $ Z_1 = \{(x_{1i}, v_{1i}, T_{1i})\}_{i = 1}^{N_1} $ and $ Z_2 = \{(x_{2j}, v_{2j}, T_{2j})\}_{j = 1}^{N_2} $, we set the following three configuration vectors:

    $ A_{\alpha}: = (a_{\alpha1}, \cdots a_{\alpha N_{\alpha}})\quad \alpha = 1, 2, \; \text{where}\; A\in\{X, V, T\}, \; \; a\in \{x, v, T\}\; \; \text{and}\; \; A: = (A_1, A_2). $

    Next, for $ \alpha\in \{1, 2\} $, we denote $ L^\infty $ diameters regarding position-velocity-temperature for each cluster group

    $ D_{X_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}\|x_{\alpha i}-x_{\alpha j}\|, \quad D_{V_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}\|v_{\alpha i}-v_{\alpha j}\|, \quad D_{T_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}|T_{\alpha i}-T_{\alpha j}| $

    and we let

    $ \mathcal{D}_{X}{: = } D_{X_1}+D_{X_2}, \quad \mathcal{D}_{V}{: = } D_{V_1}+D_{V_2}, \quad \mathcal{D}_{T}{: = }D_{T_1}+D_{T_2}. $

    Then, the admissible set $ (\mathcal {H}) $ in terms of a system parameter and initial data is given by

    $ (\mathcal {H}) = :\{(X(0), V(0), T(0))\in \mathbb{R}^{2dN}\times (\mathbb{R}_{+}-\{0\})^N\; |\; (\mathcal{H}_0), (\mathcal{H}_1), (\mathcal{H}_2)\; \text{and}\; (\mathcal{H}_3)\; \text{hold.}\} $

    ● $ (\mathcal{H}_0)\; (\text{Basic notation}) $: For simplicity, we set

    $ Λ0:=2NTMDV(0)κ1min(N1,N2)ϕ(DX)+16N2(TM)2ϕ(r02)κ1(min(N1,N2))2(ϕ(DX))2Tm+8NTM0ϕ(s+r02)dsmin(N1,N2)ϕ(DX)Tm,r0:=min1iN1,1jN2(xk1i(0)xk2j(0)),Λ1:=κ1min(N1,N2)ϕ(DX)2NTM,Λ2:=κ1N1NTmΛ1+κ1N2NTm0ϕ(s+r02)ds,Λ3:=κ1N2NTmΛ1+κ1N1NTm0ϕ(s+r02)ds,Λ4:=min(N1,N2)κ2ζ(DX)N(TM)2,Λ5:=2κ2(1Tm1TM). $

    ● $ (\mathcal{H}_1)\; (\text{Well prepared conditions}) $: There exists a strictly positive number $ \mathcal{D}_X^\infty > 0 $ such that

    $ {\mathcal{D}_X^\infty > \mathcal{D}_X(0)+\Lambda_0\quad \mbox{and}\quad \phi\; \mbox{is integrable}\; \left( \iff \int_{0}^\infty\phi(s) ds < \infty\right).} $

    ● $ (\mathcal{H}_2)\; (\text{Separated initial data}) $: For $ k\in [d] $ fixed in $ \mathcal{H}_0 $, the initial data and system parameters are chosen to be properly partitioned as follows:

    $ r_0 > 0, \quad v^k_{1i}(0)-\Lambda_2 > \frac{1}{2}, \quad v^k_{2j}(0)+\Lambda_3 < -\frac{1}{2}. $

    ● $ (\mathcal{H}_3)\; (\text{Small fluctuations and coupling strength}) $: The perturbation of local velocity in each cluster group and the coupling strength are sufficiently small:

    $ 2κ1Tmr02ϕ(s)ds<DV(0)Tmmin(N1,N2)ϕ(DX)2max(N1,N2)TM. $

    When the admissible set $ (\mathcal {H}) $ is assumed, the author of [2] verified the following bi-cluster flocking of system (1.5):

    Proposition 2.4. [2] (Bi-cluster flocking) Suppose that $ Z_1 = \{(x_{1i}, v_{1i}, T_{1i})\}_{i = 1}^{N_1} $ and $ Z_2 = \{(x_{2j}, v_{2j}, T_{2j})\}_{j = 1}^{N_2} $ are a global-in-time solution to the bi-cluster dynamical system (1.5). Further, assume that the admissible set $ (\mathcal{H}) $ is valid. Then, we can get the following bi-cluster flocking result in time.

    1. $ \min\limits_{1\leq i\leq N_1, 1\leq j\leq N_2}\|x_{1i}-x_{2j}\|\geq t+\frac{r_0}{2}, \quad D_X(t) < D_X^\infty. $

    2. $ D_V(t)\leq D_V(0)\exp\left(-\Lambda_1t\right)+\frac{2\kappa_1}{T_m^\infty\Lambda_1}\exp\left(-\frac{\Lambda_1}{2}t\right)\phi\left(\frac{r_0}{2}\right)+\frac{2\kappa_1}{T_m^\infty\Lambda_1}\phi\left(\frac{t+r_0}{2}\right). $

    3. $ D_T(t)\leq D_T(0)\exp(-\Lambda_4t)+\Lambda_5\exp\left(-\frac{\Lambda_4}{2}t\right)\zeta\left(\frac{r_0}{2}\right)+\Lambda_5\zeta\left(\frac{t+r_0}{2}\right) $.

    In Section 4, we extend the sufficient frameworks for the bi-cluster flocking of Proposition 2.4 to the multi-cluster flocking result.

    This section provides suitable sufficient frameworks for the mono-cluster flocking and gives sufficient conditions to guarantee the non-emergence of mono-cluster flocking to system (1.5) when $ \phi $ is integrable. Finally, in the case of system (1.5) under non-integrable $ \phi $, we present a sufficient condition independent of coupling strength for mono-cluster flocking to arise.

    This subsection recalls a dissipative structure for position-velocity-temperature $ L^\infty $-diameters derived in [2] and gives a mono-cluster flocking result different from Proposition 2.3 which is the mono-cluster flocking of system (1.5) proven in [2]. For this, we begin with the following dissipative inequalities for system (1.5):

    Proposition 3.1. [2] Suppose that $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ is a solution to the system (1.5). Then, we have that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ \left|\frac{dD_X}{dt}\right|\leq D_V, \quad \frac{dD_V}{dt}\leq -\kappa_1\left(\frac{\phi(D_X)}{T_M^\infty}-\frac{D_V^2}{2T_m^\infty}\right)D_V, \quad \frac{dD_T}{dt}\leq -\frac{\kappa_2\zeta(D_X)}{(T_M^\infty)^2}D_T. $

    Now, we are ready to study the new mono-cluster flocking result of system (1.5).

    Theorem 3.1. (Mono-cluster flocking) Assume that $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ is a solution to the system (1.5). Suppose that there exists a nonnegative number $ D_X^\infty\in \mathbb{R}_+ $ such that the following conditions hold:

    $ D2V(0)<2ϕ(DX)TmTM,DX(0)TMTmκ12ϕ(DX)log(2ϕ(DX)TmTMD2V(0)(2ϕ(DX)Tm+TMDV(0))2)DX. $ (3.1)

    Then, we attain the following assertions for $ t\in \mathbb{R}_+ $:

    1. $ D_X(t)\leq D_X^\infty, $

    2. $ D_V(t)\leq \left(\frac{T_M^\infty}{2\phi(D_X^\infty)T_m^\infty}+\left(\frac{1}{D^2_V(0)}-\frac{T_M^\infty}{2\phi(D_X^\infty)T_m^\infty}\right)\exp\left(\frac{2\kappa_1\phi(D_X^\infty)t}{T_M^\infty}\right)\right)^{-\frac{1}{2}}, $

    3. $ D_T(t)\leq D_T(0)\exp\left(-\frac{\kappa_2\zeta(D^\infty_X)}{(T_M^\infty)^2}t\right). $

    Proof. $ (i) $ (The case of $ D_V(t) > 0 $ for $ t\in\mathbb{R}_+ $) First, we set $ g(t) $ as

    $ g(t) = \frac{1}{D^2_V(t)}. $

    It follows from the second assertion of Proposition 3.1 that

    $ dg(t)dt2κ1TMϕ(DX(t))g(t)κ1Tm,a.e.tR+{0}. $ (3.2)

    Due to inequality (3.1) and the continuity of $ D_X $, the following set:

    $ S: = \{s > 0\; |\; {\rm{ (1) \ holds\ for}}\; t\in(0, s)\} $

    is nonempty and we denote $ t^*: = \sup S > 0 $. Next, we claim that

    $ t^* = +\infty. $

    For the proof by contradiction, suppose that $ t^* < \infty $. Then, we can obtain from inequality (3.2) and the definition of $ S $ that

    $ \frac{dg(t)}{dt}\geq \frac{2\kappa_1}{T_M^\infty}\phi(D_X^\infty)g(t)-\frac{\kappa_1}{T_m^\infty}, \quad a.e.\; t\in (0, t^*). $

    Moreover, using Grönwall's lemma with the above inequality yields that

    $ g(t)TM2ϕ(DX)Tm+(g(0)TM2ϕ(DX)Tm)exp(2κ1ϕ(DX)tTM),t[0,t]. $

    This induces that for $ t\in [0, t^*] $,

    $ DV(t)(TM2ϕ(DX)Tm+(1D2V(0)TM2ϕ(DX)Tm)exp(2κ1ϕ(DX)tTM))12. $ (3.3)

    Accordingly, we combine inequality (3.3) with the first assertion of Proposition 3.1 to estimate that for $ t\in [0, t^*] $,

    $ DX(t)DX(0)+t0DV(s)dsDX(0)+t0(TM2ϕ(DX)Tm+(1D2V(0)TM2ϕ(DX)Tm)exp(2κ1ϕ(DX)sTM))12ds<DX(0)+0(TM2ϕ(DX)Tm+(1D2V(0)TM2ϕ(DX)Tm)exp(2κ1ϕ(DX)sTM))12ds=DX(0)TMTmκ12ϕ(DX)log(2ϕ(DX)TmTMD2V(0)(2ϕ(DX)Tm+TMDV(0))2)DX, $

    which contradicts to $ t^* < \infty $. Therefore, $ t^* = \infty $ and for $ t\in \mathbb{R}_+ $,

    $ DX(t)DX. $ (3.4)

    Hence, one has for $ t\in \mathbb{R}_+ $,

    $ DV(t)(TM2ϕ(DX)Tm+(1D2V(0)TM2ϕ(DX)Tm)exp(2κ1ϕ(DX)tTM))12. $

    In addition, because the third assertion of Proposition 3.1 and inequality (3.4) hold, we derive that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ \frac{dD_T}{dt}\leq -\frac{\kappa_2\zeta(D_X)}{(T_M^\infty)^2}D_T\leq -\frac{\kappa_2\zeta(D_X^\infty)}{(T_M^\infty)^2}D_T, $

    which implies that for $ t\in \mathbb{R}_+ $,

    $ D_T(t)\leq D_T(0)\exp\left(-\frac{\kappa_2\zeta(D^\infty_X)}{(T_M^\infty)^2}\right). $

    $ (ii) $ (The case of $ D_V(t) = 0 $ for some $ t\in \mathbb{R}_+ $) We define $ s_* $ by

    $ s_*: = \inf\{t\in \mathbb{R}_+\; |\; D_V(t) = 0\}. $

    Then, $ s_*\in \mathbb{R}_+ $ and applying the Cauchy–Lipschitz theory implies that

    $ D_V(t) = 0, \quad t\geq s_*. $

    Finally, if we follow the arguments employed in the first case, we immediately reach the desired mono-cluster flocking estimate.

    Before we end this subsection, we provide the following remark:

    Remark 3.1. Although $ \frac{T_m^\infty\phi(D_{X}^\infty)}{2T_M^\infty} $ of Eq (2.1) and $ \frac{2\phi(D_X^\infty)T_m^\infty}{T_M^\infty} $ of Eq (3.1) satisfy the following inequality for $ D_X^\infty\geq 0 $:

    $ \frac{T_m^\infty\phi(D_{X}^\infty)}{2T_M^\infty}\leq\frac{2\phi(D_X^\infty)T_m^\infty}{T_M^\infty}, $

    but the following term diverges to $ -\infty $ when $ 2\phi(D_X^\infty)T_m^\infty $ and $ T_M^\infty D^2_V(0) $ are close to each other in Eq (3.1):

    $ \log\left(\frac{{2\phi(D_X^\infty)T_m^\infty}-{T_M^\infty D^2_V(0)}}{\left(\sqrt{{2\phi(D_X^\infty)T_m^\infty}}+\sqrt{{T_M^\infty}}D_V(0)\right)^2}\right). $

    Thus, it is unknown which of Proposition 2.3 and Theorem 3.1 yields better mono-cluster flocking result.

    This subsection guarantees the non-emergence of mono-cluster flocking of the system (1.5) with integrable $ \phi $ and sufficient small $ \kappa_1 $. For this, we employ the main strategies implemented in [29] for the targeted system (1.5).

    This subsubsection offers basic notations and preliminary estimates to show the non-emergence of the mono-cluster flocking of system (1.5) when $ \phi $ is integrable. First, we consider the following subdivided $ n\geq 2 $ configurations $ \{Z_{\alpha}^0\}^n_{\alpha = 1} $ of $ Z^0 = \{(x_i^0, v_i^0, T_i^0)\}_{i = 1}^N $ satisfying

    $ (x0αi,v0αi,T0αi),(x0αj,v0αj,T0αj)Z0αv0αi=v0αj, $

    where

    $ |Z^0_\alpha| = :N_{\alpha}\geq 1, \quad Z^0 = \dot\cup_{\alpha = 1}^n Z_{\alpha}^0. $

    In other words, we primarily deal with the initial configuration $ Z^0 $ that is not in a mono-cluster flocking state. Subsequently, we reorganize the system (1.5) to distinguish the $ n $-dynamics initiated from $ n $-subdivided initial configurations $ Z^0_\alpha $ as follows:

    $ {dxαidt=vαi,t>0,i=1,,Nα,α=1,,n,n2,dvαidt=κ1NNαj=1ϕ(xαixαj)(vαjvαj,vαivαiTαj)+κ1NβαNβj=1ϕ(xαixβj)(vβjvβj,vαivαiTβj),dTαidt=κ2NNαj=1ζ(xαixαj)(1Tαi1Tαj)+κ2NβαNβj=1ζ(xαixβj)(1Tαi1Tβj),(xαi(0),vαi(0),Tαi(0))=(x0αi,v0αi,T0αi)Rd×Sd1×(R+{0}). $ (3.5)

    In the following, we denote local averages and local deviations for $ \alpha = 1, \cdots, n $

    $ x^{cen}_{\alpha} = \frac{1}{N_\alpha}\sum\limits_{i = 1}^{N_\alpha}x_{\alpha i}, \quad v^{cen}_{\alpha} = \frac{1}{N_\alpha}\sum\limits_{i = 1}^{N_\alpha}v_{\alpha i}, \quad \hat{x}_{\alpha i}: = x_{\alpha i}-x^{cen}_{\alpha}, \quad \hat{v}_{\alpha i}: = v_{\alpha i}-v^{cen}_{\alpha}, $

    and we set the following notation to estimate the degree of separation between $ n $-subdivided initial configuration sets $ \{Z_{\alpha}^0\}^n_{\alpha = 1} $.

    $ D(x0):=maxαβ,i,jx0αix0βj,θ0:=minαβarccosvcenα(0),vcenβ(0),λ0:=min(cos((δ+ϵ)θ0)cos((14δϵ)θ0),cos(δθ0)cos((1δ)θ0)(D(x0)+2T0)(N1)κ1NTm), $

    where two auxiliary parameters $ \epsilon, \delta $ $ \in (0, 1) $ will be specified later such that $ \lambda_0 > 0 $ in Section 3.2.2 and we define $ T_0 $ as

    $ T_0: = \max\limits_{\alpha\neq\beta, i, j}\left\{0, -\frac{\langle x^0_{\alpha i}-x^0_{\beta j}, v^{cen}_{\alpha}(0)\rangle}{\lambda_0}\right\}. $

    We observe that $ D(x^0) $, $ \theta_0 $ and $ \lambda_0 $ are dependent on given initial data non-mono-cluster flocking state. As we will see later, $ T_0 $ is indeed the time when two agents belonging to different cluster groups begin to move away from each other linearly and $ \lambda_0 $ is needed to estimate $ T_0 $. For the detailed descriptions, see Section 3.2.2.

    Next, we set the coupling strength $ {\tilde{\kappa}_0} $ dependent on given initial data $ Z^0 = \{(x_i^0, v_i^0)\}_{i = 1}^N $ of the system (1.5) as follows:

    $ (i) $ (The case of $ \min_{\alpha\neq\beta, i, j}\langle (x^0_{\alpha i}-x^0_{\beta j}), v_\alpha^{cen}\rangle < 0 $): We define $ {\tilde{\kappa}_0} $ as

    $ ˜κ0=min(NTm(1cos(δθ0))2(N1)T0,NTm(cos(δθ0)cos((1δ)θ0)λ0)(N1)(D(x0)+2T0),λ0(cos(δθ0)cos((δ+ϵ)θ0))(1γN)0ϕ(s)ds),whereγN:=minαNαN. $

    $ (ii) $ (The case of $ \min_{\alpha\neq\beta, i, j}\langle (x^0_{\alpha i}-x^0_{\beta j}), v_\alpha^{cen}\rangle\geq 0 $): We define $ {\tilde{\kappa}_0} $ as

    $ ˜κ0=˜λ0(1cos(˜δθ0))(1γN)0ϕ(s)ds,where˜λ0:=cos(˜δθ0)cos((1˜δ)θ0). $

    Herein, an auxiliary parameter $ \tilde{\delta}\in (0, 1) $ will be determined such that $ \tilde{\lambda}_0 > 0 $ later in Section 3.2.2.

    Finally, we present the definitions of $ \triangle_{\alpha i, \beta j}(t) $ and $ v_\alpha^{min} $, which will be crucially used to verify the non-emergence of mono-cluster flocking in the system (1.5). We let

    $ \triangle_{\alpha i, \beta j}(t): = \langle x_{\alpha i}(t)-x_{\beta j}(t), v^{cen}_{\alpha}(t)\rangle, \quad v_\alpha^{min}: = \min\limits_{1\leq i\leq N_\alpha}\langle v_{\alpha i}(t), e_{\alpha}(T_0)\rangle, $

    where $ e_{\alpha}(t): = \frac{v^{cen}_{\alpha}(t)}{\|v^{cen}_{\alpha}(t)\|} $. Note that $ \triangle_{\alpha i, \beta j}(t) $ shows how well $ Z_\alpha(t) $ and $ Z_\beta(t) $ are separated from each other at time $ t $. Therefore, rigorous estimates concerning $ \triangle_{\alpha i, \beta j}(t) $ are important to obtain the non-emergence of mono-cluster flocking in the system (1.5).

    In what follows, we demonstrate the non-emergence of the mono-cluster flocking of the TCSUS system (1.5). For this, we assume that $ T_0 > 0 $ throughout the subsubsection. If otherwise, it is a trivial case when $ T_0 = 0 $ (see Theorem 3.2). Now, we begin with the following preparatory lemmas:

    Lemma 3.1. Suppose that $ Z_\alpha $ is a solution to the system (3.5) with given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha\in \{1, \cdots, n\} $. Assume that there exists a positive number $ \delta\in \left(0, \frac{1}{3}\right) $ such that

    $ 0 < \kappa_1 < \frac{NT_m^\infty(1-\cos(\delta \theta_0))}{2(N-1)T_0}. $

    Then, one has for $ t\in [0, T_0] $ and $ \alpha\neq\beta $,

    1. $ \langle v_{\alpha i}, v^{cen}_{\alpha}\rangle > \cos(\delta \theta_0) , \quad \langle v_{\beta j}, v^{cen}_{\alpha}\rangle < \cos((1-\delta) \theta_0) $,

    2. $ \langle v_{\alpha i}, v_{\beta j}\rangle < \cos((1-\delta) \theta_0) , \quad \langle e_{\alpha}, e_{\beta} \rangle < \cos((1-3\delta)\theta_0) $.

    Proof. To estimate the first assertion of (1), we first see that

    $ dvαidt=κ1NNj=1ϕ(xαixj)(vjvj,vαivαiTj)=κ1NNjαiϕ(xαixj)(vjvj,vαivαiTj). $

    Then, the triangle inequality and $ \phi\leq 1 $ yield that

    $ \left\|\frac{dv_{\alpha i}}{dt}\right\|\leq \frac{(N-1)\kappa_1}{NT_m^\infty}, $

    where we used Proposition 2.2 and $ \|v_j-\langle v_j, v_{\alpha i}\rangle v_{\alpha i}\|\leq 1. $ Thus, it follows that

    $ \left|\frac{d}{dt}\langle v_{\alpha i}, v^{cen}_{\alpha}\rangle \right|\leq \frac{2(N-1)\kappa_1}{NT_m^\infty}, $

    which implies by the condition for $ \kappa_1 $ and construction of $ Z^0_\alpha $ that for $ t\in [0, T_0] $,

    $ vαi(t),vcenα(t)=vαi(0),vcenα(0)+t0ddsvαi(s),vcenα(s)dsvαi(0),vcenα(0)2(N1)κ1T0NTm=12(N1)κ1T0NTm>cos(δθ0). $

    To prove the second assertion of (1), we employ the same method as in the proof of the first assertion of (1) as follows:

    $ \left\|\frac{dv_{\beta j}}{dt}\right\|\leq \frac{(N-1)\kappa_1}{NT_m^\infty}\quad \mbox{and then, }\quad \left|\frac{d}{dt}\langle v_{\beta j}, v^{cen}_{\alpha}\rangle \right|\leq \frac{2(N-1)\kappa_1}{NT_m^\infty}. $

    From the definitions of $ Z^0_\alpha $ and $ \theta_0 $, we get that for $ t\in [0, T_0] $,

    $ vβj,vcenαvβj(0),vcenα(0)+2(N1)κ1T0NTm=vcenβ(0),vcenα(0)+2(N1)κ1T0NTmcos(θ0)+2(N1)κ1T0NTmcos(θ0)+1cos(δθ0)<cos((1δ)θ0), $

    where we used the assumption for $ \kappa_1 $. Next, following the proof of (1), we can also attain the first assertion of (2) for $ t\in [0, T_0] $:

    $ \langle v_{\alpha i}, v_{\beta j}\rangle < \cos((1-\delta) \theta_0). $

    Finally, to verify the second assertion of (2), we combine (1) and the first assertion of (2) to attain that for $ t\in [0, T_0] $,

    $ arccos(eα,eβ)arccos(eα,vαi)+arccos(vαi,vβj)arccos(vβj,eβ)>(1δ)θ02δθ0=(13δ)θ0. $

    Therefore, $ \langle e_{\alpha}, e_{\beta} \rangle < \cos((1-3\delta)\theta_0) $ for $ t\in [0, T_0] $ and we conclude this lemma.

    The following lemma plays a key role in deriving the desired result:

    Lemma 3.2. Let $ Z_\alpha $ be a solution to the system (3.5) with given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha = 1, \cdots, n $. Suppose that there exists a positive number $ \delta\in \left(0, \frac{1}{3}\right) $ such that

    $ 0 < \kappa_1 < \min\left(\frac{NT_m^\infty(1-\cos(\delta \theta_0))}{2(N-1)T_0}, \frac{NT_m^\infty\left(\cos(\delta \theta_0)-\cos((1-\delta)\theta_0)-\lambda_0\right)}{(N-1)(D(x^0)+2T_0)} \right), \quad \lambda_0 > 0. $

    Then, we obtain that

    $ minαβ,i,jαi,βj(T0)>0. $

    Proof. First, we note that

    $ \|x_{\alpha i}(t)-x_{\beta j}(t)\| = \left\|x_{\alpha i}(0)-x_{\beta j}(0)+\int_{0}^t (v_{\alpha i}(s)-v_{\beta j}(s)) ds\right\|\leq D(x^0)+2T_0. $

    Hence, we have from the arguments studied in Lemma 3.1 and the definition of $ \lambda_0 $ that

    $ ddtαi,βj=vαi,vcenαvβj,vcenα+xαixβj,˙vcenα>cos(δθ0)cos((1δ)θ0)(D(x0)+2T0)(N1)κ1NTmλ0>0, $

    which leads to the following result using the definition of $ T_0 $:

    $ \triangle_{\alpha i, \beta j}(t) > \triangle_{\alpha i, \beta j}(0)+\lambda_0t\quad \mbox{and thus, }\quad \triangle_{\alpha i, \beta j}(T_0) > \triangle_{\alpha i, \beta j}(0)+\lambda_0T_0 > 0. $

    From the above relation, we take $ \min_{\alpha\neq\beta, i, j} $ to derive that

    $ \min\limits_{\alpha\neq\beta, i, j}\triangle_{\alpha i, \beta j}(T_0) > 0. $

    We reach the desired lemma.

    Subsequently, to prove the main result using the bootstrapping argument, we denote $ \bar{T}_0 $

    $ \bar{T}_0: = \sup\left\{t\in (T_0, \infty)\; \bigg|\; \min\limits_{\alpha, i} \langle v_{\alpha i}(s), e_\alpha(T_0)\rangle > \cos((\delta+\epsilon)\theta_0), \quad s\in [T_0, t) \right\}, $

    where an auxiliary parameter $ \epsilon\in (0, 1) $ will be determined in Lemma 3.3. Here, we observe from Lemma 3.2 that $ e_\alpha(T_0) $ is well-defined. In addition, $ \bar{T}_0 $ is well-defined due to Lemma 3.1. Indeed,

    $ \langle v_{\alpha i}(T_0), e_\alpha(T_0)\rangle > \cos(\delta\theta_0) > \cos((\delta+\epsilon)\theta_0). $

    From now on, we claim that

    $ \bar{T}_0 = \infty. $

    Lemma 3.3. Assume that $ Z_\alpha $ is a solution to the system (3.5) given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha = 1, \cdots, n $. Suppose that there exist positive numbers $ \epsilon $ and $ \delta $ that satisfy

    $ 0 < \delta < \frac{1-2\epsilon}{5}, \quad \epsilon\in\left(0, \frac{1}{2}\right), \quad 0 < \kappa_1 < \frac{NT_m^\infty(1-\cos(\delta \theta_0))}{2(N-1)T_0}, \quad \lambda_0 > 0. $

    Then, for $ t\in [T_0, \bar{T}_0] $,

    $ maxα,β,jvβj,eα(T0)<cos((14δϵ)θ0),minαβ,i,jvαivβj,eα(T0)>λ0. $

    Proof. To get the first assertion, from the definition of $ \bar{T}_0 $ and Lemma 3.1, we estimate that

    $ arccos(vβj,eα(T0))arccos(eβ(T0),eα(T0))arccos(vβj,eβ(T0))>(13δ)θ0(δ+ϵ)θ0=(14δϵ)θ0. $

    This leads us to deduce that

    $ \max\limits_{\alpha, \beta, j}\langle v_{\beta j}, e_\alpha(T_0) \rangle < \cos((1-4\delta-\epsilon)\theta_0). $

    Additionally, the definition of $ \bar{T}_0 $ and the first assertion yield that

    $ \min\limits_{\alpha\neq\beta, i, j}\langle(v_{\alpha i}-v_{\beta j}), e_\alpha(T_0)\rangle > \cos((\delta+\epsilon) \theta_0)-\cos((1-4\delta-\epsilon)\theta_0)\geq \lambda_0. $

    We need the following lemma to verify that $ \bar{T}_0 = \infty $:

    Lemma 3.4. Let $ Z_\alpha $ be a solution to the system (3.5) given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha = 1, \cdots, n $. Assume that there exist positive numbers $ \epsilon $ and $ \delta $ that satisfy $ 0 < \delta < \frac{1-2\epsilon}{5}, \; \epsilon\in\left(0, \frac{1}{2}\right) $, and

    $ 0 < \kappa_1 < \min\left(\frac{NT_m^\infty(1-\cos(\delta \theta_0))}{2(N-1)T_0}, \frac{NT_m^\infty\left(\cos(\delta \theta_0)-\cos((1-\delta)\theta_0)-\lambda_0\right)}{(N-1)(D(x^0)+2T_0)} \right), \quad \lambda_0 > 0. $

    Then, we reach that

    $ ϕM(t):=maxαβ,i,jϕ(xβjxαi)ϕ(λ0(tT0)),t[T0,ˉT0). $

    Proof. By applying Lemma 3.2 and Lemma 3.3, we induce that for $ t\in [T_0, \bar{T}_0) $,

    $ xαixβj(xαixβj),eα(T0)=(xαi(T0)xβj(T0)),eα(T0)+tT0(vαi(s)vβj(s)),eα(T0)ds>tT0(vαi(s)vβj(s)),eα(T0)ds>λ0(tT0). $

    Then, this leads to the following result for $ t\in [T_0, \bar{T}_0) $ due to the monotonicity of $ \phi $:

    $ ϕM(t):=maxαβ,i,jϕ(xβjxαi)ϕ(λ0(tT0)). $

    Hence, we conclude the desired lemma.

    Subsequently, we estimate the time derivative of $ v^{min}_{\alpha} $ to demonstrate the main result.

    Lemma 3.5. Let $ Z_\alpha $ be a solution to the system (3.5) given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha = 1, \cdots, n $. Then, for $ \alpha = 1, \cdots, n $, it follows that for $ t\in [T_0, \bar{T}_0) $,

    $ \dot{v}^{min}_\alpha\geq -\frac{\kappa_1(1-\gamma_N)\phi_M}{T_m^\infty}. $

    Proof. First, we fix $ \alpha\in\{1, \cdots, n\} $; then, we select index $ i_\alpha: = i_\alpha(t)\in \{1, \cdots, N_\alpha\} $ at time $ t $ such that

    $ {v}^{min}_\alpha = \langle v_{\alpha i_\alpha}, e_\alpha(T_0)\rangle. $

    Then, if we use system (3.5), Proposition 2.2, and the definitions of $ i_\alpha $ and $ \bar{T}_0 $, we obtain that

    $ ˙vminα=˙vαiα,eα(T0)=κ1NNαj=1ϕ(xαiαxαj)(vαjvαj,vαiαvαiαTαj),eα(T0)+κ1NβαNβj=1ϕ(xαiαxβj)(vβjvβj,vαiαvαiαTβj),eα(T0)κ1NβαNβj=1ϕ(xαiαxβj)(vβjvβj,vαiαvαiαTβj),eα(T0)κ1ϕMTm(NNα)Nκ1(1γN)ϕMTm, $

    where we employed

    $ \|v_{\beta j}-\langle v_{\beta j}, v_{\alpha i_{\alpha}}\rangle v_{\alpha i_{\alpha}}\|\leq 1. $

    Thus, we get the desired lemma.

    Finally, we are ready to study the non-emergence of the mono-cluster flocking of system (3.5) under the integrable communication weight $ \phi $, i.e.,

    $ \|\phi\|_{L_1} = \int_{0}^\infty\phi(s)ds < \infty. $

    Theorem 3.2. (Non-emergence of mono-cluster flocking) Assume that $ Z_\alpha $ is a solution to the system (3.5) with given initial data $ Z^0_\alpha $ that is a non-mono-cluster flocking state for each $ \alpha = 1, \cdots, n $. Suppose that $ T_0 > 0 $ and there exist positive numbers $ \epsilon $ and $ \delta $ that satisfy $ 0 < \delta < \frac{1-2\epsilon}{5} $ and $ \epsilon\in\left(0, \frac{1}{2}\right) $ such that

    $ 0 < \kappa_1 < {\tilde{\kappa}_0}, \quad \lambda_0 > 0. $

    Then, we attain that

    $ minαβ,i,jsuptR+xαixβj=,minαβ,i,jlim inftvαivβj>0. $

    Meanwhile, when $ T_0 = 0 $, we let $ \tilde{\lambda} > 0 $ and $ \tilde{\delta}\in \left(0, \frac{1}{2}\right) $. Then, we can reach the same results as above.

    Proof. To demonstrate the desired results, we divide them by the following dichotomy:

    $ T_0 > 0\quad \mbox{or}\quad T_0 = 0. $

    $ (i)\; (\mbox{The case of}\; T_0 > 0) $ For the proof by contradiction, suppose that $ \bar{T}_0 < \infty $. Then, there exist $ \alpha\in\{1, \cdots, n\} $ and $ i_\alpha\in\{1, \cdots, N_\alpha\} $ such that

    $ \langle v_{\alpha i_\alpha}(\bar{T}_0), e_\alpha(T_0)\rangle = \cos((\delta+\epsilon)\theta_0). $

    Then, we use Lemmas 3.1, 3.4 and 3.5 to obtain that for $ t\in [T_0, \bar{T}_0] $,

    $ vαiα,eα(T0)vminαvminα(T0)κ1(NNα)NTmtT0ϕM(s)dscos(δθ0)κ1(NNα)NTmλ0ϕL1cos(δθ0)κ1(1γN)Tmλ0ϕL1>cos((δ+ϵ)θ0), $

    which gives a contradiction; therefore, $ \bar{T}_0 = \infty $. Then, the second assertion of Lemmas 3.3 and 3.4 with $ \bar{T}_0 = \infty $ yield the desired result.

    $ (ii)\; (\mbox{The case of}\; T_0 = 0) $ This case is trivial, but we provide the proof rigorously to compare with the proof regarding the first assertion. Let

    $ {T}^*_0: = \sup\left\{t\in \mathbb{R}_+-\{0\}\; \bigg|\; \min\limits_{\alpha, i} \langle v_{\alpha i}, e_\alpha(0)\rangle > \cos(\tilde{\delta}\theta_0), \quad t\in [0, t) \right\}, \; \mbox{where}\; \tilde{\delta}\in\left(0, \frac{1}{2}\right). $

    It follows from the definition of $ Z_\alpha $ that $ {T}^*_0 > 0 $ exists. For the proof by contradiction, suppose that $ T_0^* < \infty $. Next, we employ the same method as utilized in proof of the first assertion of Lemma 3.1 to estimate that

    $ \langle v_{\beta j}(t) , e_\alpha(0)\rangle < \cos(1-\tilde{\delta})\theta_0, \quad t\in [0, T^*_0). $

    Hence, we have

    $ \min\limits_{\alpha\neq\beta, i, j}\langle v_{\alpha i}(t)-v_{\beta j}(t), e_\alpha(0)\rangle > \cos(\tilde{\delta}\theta_0)-\cos((1-\tilde{\delta})\theta_0) = :\tilde{\lambda}_0 > 0. $

    Then, similarly to the proof of Lemma 3.4, one can show that

    $ \phi_M(t)\leq \phi(\tilde{\lambda}_0t), \quad t\in [0, T^*_0] $

    and thus, for $ t\in [0, T_0^*) $, we can get the following estimates using the same methodologies as in the proof of Lemma 3.5:

    $ vαiα,eα(0)vminαvminα(0)κ1(NNα)NTmt0ϕM(s)ds=1κ1(NNα)NTmt0ϕM(s)ds1κ1(NNα)NTmλ0ϕL1>cos(˜δθ0), $

    which leads to a contradiction. Therefore, $ {T}^*_0 = \infty $. Finally, if the arguments of Lemmas 3.3 and 3.4 are applied to the case of $ T_0 = 0 $, we conclude the desired result.

    This subsection demonstrates a different sufficient framework than Section 3.1 for mono-cluster flocking to emerge in the system (1.5) when $ \phi $ is non-integrable by using the previous results of [3].

    Proposition 3.2. [3] Let $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ be a solution to the system (1.5) such that

    $ \mathcal{A}(v)(0): = \min\limits_{1\leq i, j\leq N}\langle v^0_i, v^0_j \rangle > 0, \quad D_V(0) < \frac{\kappa_1\mathcal{A}(v)(0)}{T_M^\infty}\int_{D_X(0)}^\infty \phi(s)ds. $

    Then, there exists a nonnegative number $ D_X^\infty \in \mathbb{R}_+ $ satisfying for $ t\in \mathbb{R}_+ $,

    1. (Group formation) $ D_X(t)\leq D_X^\infty $,

    2. (Velocity alignment) $ D_V(t)\leq D_V(0)\exp\left(-\frac{\kappa_1\mathcal{A}(v)(0)\phi(D_X^\infty)}{T_M^\infty}t\right) $,

    3. (Temperature equilibrium) $ D_T(t)\leq D_T(0)\exp\left(-\frac{\kappa_2\zeta(D_X^\infty)}{(T_M^\infty)^2}t\right). $

    Proof. We employ the same methodologies as the proofs of Lemma 3.1 and Theorem 3.2 in [3] to obtain the desired result. Although the previous paper [3] dealt with the singular communication weight $ \phi $ to system (1.5), the proofs of Lemma 3.1 and Theorem 3.2 in [3] can be applied, even assuming the regular communication weight case covered in this paper.

    Due to Proposition 3.2, we note the following remark.

    Remark 3.2. It is easy to check that we can remove the condition,

    $ D_V(0) < \frac{\kappa_1\mathcal{A}(v)(0)}{T_M^\infty}\int_{D_X(0)}^\infty \phi(s)ds, $

    when $ \phi $ is non-integrable. In other words, when $ \phi $ is non-integrable, the mono-cluster flocking of the system (1.5) emerges under the only assumption $ \mathcal{A}(v)(0) > 0 $.

    Finally, we present the following mono-cluster flocking of system (1.5) under non-integrable $ \phi $:

    Theorem 3.3. (Mono-cluster flocking under non-integrable $ \phi $) Assume that $ \{(x_i, v_i, T_i)\}_{i = 1}^N $ is a solution to the system (1.5) under non-integrable $ \phi $ and suppose that

    $ \mathcal{A}(v)(0): = \min\limits_{1\leq i, j\leq N}\langle v^0_i, v^0_j \rangle > 0. $

    Then, there exists a nonnegative number $ D_X^\infty \in \mathbb{R}_+ $ such that for $ t\in \mathbb{R}_+ $,

    1. (Group formation) $ D_X(t)\leq D_X^\infty $,

    2. (Velocity alignment) $ D_V(t)\leq D_V(0)\exp\left(-\frac{\kappa_1\mathcal{A}(v)(0)\phi(D_X^\infty)}{T_M^\infty}t\right) $,

    3. (Temperature equilibrium) $ D_T(t)\leq D_T(0)\exp\left(-\frac{\kappa_2\zeta(D_X^\infty)}{(T_M^\infty)^2}t\right). $

    This section provides several sufficient frameworks for the multi-cluster flocking of the system (1.5). In Section 3, we studied that mono-cluster flocking does not occur when the coupling strength $ \kappa_1 $ is less than a certain positive value in system (1.5) with integrable $ \phi $. In Section 3.2.1, we employed suitable subdivided configurations, $ \{Z_{\alpha}^0\}^n_{\alpha = 1} $, so that all initial velocities are equal to each other in each group and deduced some sufficient conditions guaranteeing the non-emergence of the mono-cluster flocking of the system. Accordingly, we may wonder what the sufficient conditions are for multi-cluster flocking to occur, so it is necessary to check how little coupling strength is required for multi-cluster flocking to occur in system (1.5). To achieve this, we reorganize the system (1.5) under integrable $ \phi $ to a multi-cluster setting and then derive suitable dissipative differential inequalities with respect position–velocity–temperature. Finally, using bootstrapping arguments for these inequalities, we deduce appropriate sufficient conditions in terms of the initial data and system parameters to guarantee the mono-cluster flocking of system (1.5). As a direct consequence, we also prove that the velocity and temperature of all agents in each cluster group converge to the same values.

    This subsection converts the TCSUS model (1.5) into some multi-cluster setting. Afterward, we present basic estimates for the averages of position-velocity-temperature. For this, we begin by reorganizing the system (1.5) to the following multi-cluster setting:

    $ dxαidt=vαi,t>0,i{1,,Nα},α{1,,n},n3, $ (4.1a)
    $ ˙vαi=κ1NNαj=1ϕ(xαixαj)(vαjvαi,vαjvαi)Tαj $ (4.1b)
    $ +κ1NβαNβj=1ϕ(xαixβj)(vβjvαi,vβjvαi)Tβj, $ (4.1c)
    $ ˙Tαi=κ2NNαj=1ζ(xαixαj)(1Tαi1Tαj)+κ2NβαNβj=1ζ(xαixβj)(1Tαi1Tβj), $ (4.1d)
    $ (xαi(0),vαi(0),Tαi(0))Z0α×T0αiRd×Sd1×(R+{0}). $ (4.1e)

    For each cluster group $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $, we denote the following three configuration vectors:

    $ A_{\alpha}: = (a_{\alpha1}, \cdots a_{\alpha N_{\alpha}}), \; 1\leq\alpha\leq n, \; \text{where}\; A\in\{X, V, T\}, \; \; a\in \{x, v, T\}, \; A: = (A_1, \cdots, A_\alpha). $

    Next, we define position-velocity-temperature $ L^\infty $-diameters to each cluster group as follows:

    $ (i) $ (The position-velocity-temperature diameters to the $ \alpha $-th cluster group)

    $ D_{X_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}\|x_{\alpha i}-x_{\alpha j}\|, \quad D_{V_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}\|v_{\alpha i}-v_{\alpha j}\|, \quad D_{T_\alpha}: = \max\limits_{1\leq i, j\leq N_\alpha}|T_{\alpha i}-T_{\alpha j}|. $

    $ (ii) $ (The local averages of velocity and temperature in each cluster group)

    $ {v_{\alpha}^{cen}}: = \frac{1}{N_\alpha }\sum\limits_{i = 1}^{N_\alpha }v_{\alpha i}, \quad {T_{\alpha }^{cen}}: = \frac{1}{N_\alpha}\sum\limits_{i = 1}^{N_\alpha}T_{\alpha i}. $

    Before we end this subsection, we offer the following lemma regarding the local averages of velocity and temperature for each cluster group. This lemma will be crucially used to prove that the velocity and temperature of all agents in each cluster group converges to some unified values.

    Lemma 4.1. Assume that $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ is a solution to the system (4.1). Then, each local average $ (x_{\alpha}^{cen}, v_{\alpha}^{cen}, T_{\alpha}^{cen}) $ satisfies the following relations:

    $ {dxcenαdt=vcenα,t>0,α{1,,n},n3,Nα˙vcenα=κ1NNαi=1Nαj=1ϕ(xαixαj)vαivαjvαi22Tαj+κ1NβαNαi=1Nβj=1ϕ(xαixβj)(vβjvαi+vαivβjvαi22)1Tβj,Nα˙Tcenα=κ2NβαNαi=1Nβj=1ζ(xαixβj)(1Tαi1Tβj). $

    Proof. The first assertion is trivial. For the second assertion, we take $ \sum_{i = 1}^{N_\alpha} $ to $ \dot{v}_{\alpha i} $ and use the standard trick of interchanging $ i $ and $ j $ and dividing $ 2 $ and

    $ 1-\langle v_{\alpha i}, v_{\alpha j} \rangle = \frac{\|v_{\alpha i}-v_{\alpha j}\|^2}{2}. $

    For the third assertion, we take $ \sum_{i = 1}^{N_\alpha} $ to $ \dot{T}_{\alpha i} $ and again use the standard trick as above.

    In the following, we derive several dissipative differential inequalities with respect to position–velocity–temperature to obtain suitable sufficient frameworks in terms of system parameters and initial data for the multi-cluster flocking of system (4.1). For this, we define

    $ D_{X}: = \sum\limits_{\alpha = 1}^nD_{X_\alpha}, \quad D_{V}: = \sum\limits_{\alpha = 1}^nD_{V_\alpha}, \quad D_{T}{: = }\sum\limits_{\alpha = 1}^n D_{T_\alpha}. $

    Note that the above diameter functionals $ D_{X} $, $ D_{V} $ and $ D_{T} $ measure the total deviations of position, velocity and temperature to each cluster group $ Z_\alpha $, respectively.

    To reduce the TCSUS system (4.1) to its appropriate dissipative structure, we employ the following functionals: For $ \alpha = 1, \cdots, n, $

    $ \Phi_{\alpha ij}(t): = \frac{\phi(\|x_{\alpha i}-x_{\alpha j}\|)}{N_\alpha}+\left(1-\frac{\sum\limits_{j = 1}^{N_\alpha}\phi(\|x_{\alpha i}-x_{\alpha j}\|)}{N_\alpha}\right)\delta_{ij}, $

    where $ \delta_{ij} $ denotes the Kronecker delta. Next, for simplicity, we set

    $ \phi_{\alpha ij}: = \phi(\|x_{\alpha i}-x_{\alpha j}\|). $

    Then, we can easily check that $ \Phi_{\alpha ij} $ satisfies the following properties:

    1. $ \Phi_{\alpha ij}\geq \frac{\phi_{\alpha ij}}{N_\alpha}, \quad \sum\limits_{j = 1}^{N_\alpha}\Phi_{\alpha ij} = 1, \quad \Phi_{\alpha ij} = \Phi_{\alpha ji}, $

    2. $ \sum\limits_{j = 1}^{N_\alpha}\Phi_{\alpha ij}\frac{(v_{\alpha j}-\langle v_{\alpha j}, v_{\alpha i}\rangle v_{\alpha i})}{T_{\alpha j}} = \sum\limits_{j = 1}^{N_\alpha}\frac{\phi_{\alpha ij}}{N_\alpha}\frac{(v_{\alpha j}-\langle v_{\alpha j}, v_{\alpha i}\rangle v_{\alpha i})}{T_{\alpha j}}. $

    Similarly, we can observe that the functional $ \Psi_{\alpha ij} $ defined by

    $ \Psi_{\alpha ij}(t): = \frac{\zeta(\|x_{\alpha i}-x_{\alpha j}\|)}{N_\alpha}+\left(1-\frac{\sum\nolimits_{j = 1}^{N_\alpha}\zeta(\|x_{\alpha i}-x_{\alpha j}\|)}{N_\alpha}\right)\delta_{ij}, \quad \zeta_{\alpha ij}: = \zeta(\|x_{\alpha i}-x_{\alpha j}\|) $

    satisfies the following relations:

    1. $ \Psi_{\alpha ij}\geq \frac{\zeta_{\alpha ij}}{N_\alpha}, \quad \sum\limits_{j = 1}^{N_\alpha}\Psi_{\alpha ij} = 1, \quad \Psi_{\alpha ij} = \Psi_{\alpha ji} $,

    2. $ \sum\limits_{j = 1}^{N_\alpha}\Psi_{\alpha ij}\left(\frac{1}{T_{\alpha i}}-\frac{1}{T_{\alpha j}}\right) = \sum\limits_{j = 1}^{N_\alpha}\frac{\zeta_{\alpha ij}}{N_\alpha}\left(\frac{1}{T_{\alpha i}}-\frac{1}{T_{\alpha j}}\right). $

    We note that the above functionals of this type have already been used several times in previous literature [2,6,25,27,28]. Unlike the aforementioned previous papers, the above functionals can be applied to a multi-cluster setting.

    In what follows, we induce dissipative differential inequalities in terms of $ D_X $, $ D_V $ and $ D_T $, respectively, to deduce several sufficient frameworks for the multi-cluster flocking estimate of system (4.1).

    Lemma 4.2. (Dissipative structure) Suppose that $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ is a solution to the system (4.1). If we set $ \phi_M $ and $ \zeta_M $ as

    $ \phi_M(t): = \max\limits_{\alpha\neq \beta, i, j}\phi(\|x_{\beta j}-x_{\alpha i}\|), \quad \zeta_M(t): = \max\limits_{\alpha\neq \beta, i, j}\zeta(\|x_{\beta j}-x_{\alpha i}\|). $

    Then, we have the following three differential inequalities for a.e. $ t\in \mathbb{R}_+-\{0\} $:

    1. $ \left|\frac{dD_X}{dt}\right|\leq D_V $,

    2. $ \frac{dD_V}{dt}\leq -\frac{\kappa_1\min(N_1, \cdots, N_\alpha)\phi(D_{X})}{NT_M^\infty}D_{V}+\frac{\kappa_1\max(N_1, \cdots, N_\alpha)D^3_V}{2NT_m^\infty}+\frac{2\kappa_1({n}-1)\phi_M}{T_m^\infty}, $

    3. $ \frac{dD_{T}}{dt}\leq -\frac{\kappa_2\min(N_1, \cdots, N_\alpha)\zeta(D_X)}{N(T_M^\infty)^2}D_{T}+{2\kappa_2({n}-1)\zeta_M}\left(\frac{1}{T_m^\infty}-\frac{1}{T_M^\infty}\right). $

    Proof. Cauchy–Schwarz's inequality immediately yields the first assertion. Next, to prove the third assertion, we choose two indices, $ M_t $ and $ m_t $, depending on $ t $, such that

    $ D_{T_\alpha}(t) = T_{\alpha M_t}(t)-T_{\alpha m_t}(t), \quad 1\leq m_t, M_t\leq N_\alpha. $

    Now, we recall the subsystem (4.1c) as follows:

    $ ˙Tαi=κ2NNαj=1ζ(xαixαj)(1Tαi1Tαj)+κ2NβαNβj=1ζ(xαixβj)(1Tαi1Tβj). $

    Then, for a.e. $ t\in \mathbb{R}_+-\{0\} $, one can show that by using the definitions of $ M_t $ and $ m_t $

    $ dDTαdt=κ2NNαj=1ζ(xαMtxαj)(1TαMt1Tαj)κ2NNαj=1ζ(xαmtxαj)(1Tαmt1Tαj)+κ2NβαNβj=1ζ(xαMtxβj)(1TαMt1Tβj)κ2NβαNβj=1ζ(xαmtxβj)(1Tαmt1Tβj)=:I1+I2+I3+I4. $

    $ (i) $ (Estimate of $ \mathcal{I}_1 $+$ \mathcal{I}_2 $) Similar to the proof of Lemma 3.2 in [2], for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ I1+I2κ2Nαζ(DXα)N(TM)2DTα. $

    $ (ii) $ (Estimate of $ \mathcal{I}_3 $+$ \mathcal{I}_4 $) From Proposition 2.2 and the definitions of $ \phi_M $ and $ \phi_m $, for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ I3+I4κ2N|βαNβj=1ζ(xαMtxβj)(1TαMt1Tβj)|+κ2N|βαNβj=1ζ(xαmtxβj)(1Tαmt1Tβj)|2κ2(NNα)ζMN(1Tm1TM). $

    Thus, combining $ \mathcal{I}_1 $+$ \mathcal{I}_2 $ and $ \mathcal{I}_3 $+$ \mathcal{I}_4 $ yields that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ \frac{dD_{T_\alpha}}{dt}\leq -\frac{\kappa_2N_{\alpha}\zeta(D_{X_\alpha})}{N(T_M^\infty)^2}D_{T_\alpha}+\frac{2\kappa_2(N-N_\alpha)\zeta_M}{N}\left(\frac{1}{T_m^\infty}-\frac{1}{T_M^\infty}\right). $

    Therefore, we take the summation from $ \alpha $ = 1 to $ n $ to the above inequality to get that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ \frac{dD_{T}}{dt}\leq -\frac{\kappa_2\min(N_1, \cdots, N_\alpha)\zeta(D_X)}{N(T_M^\infty)^2}D_{T}+{2\kappa_2({n}-1)\zeta_M}\left(\frac{1}{T_m^\infty}-\frac{1}{T_M^\infty}\right). $

    To verify the second assertion, we select two indices $ M_t $ and $ m_t $ depending on $ t $ satisfying

    $ D_{V_\alpha}(t) = \|v_{\alpha M_t}(t)-v_{\alpha m_t}(t)\|, \quad 1\leq m_t, M_t\leq N_\alpha. $

    We recall the following velocity coupling Eq (4.1b):

    $ ˙vαi=κ1NNαj=1ϕ(xαixαj)(vαjvαi,vαjvαi)Tαj+κ1NβαNβj=1ϕ(xαixβj)(vβjvαi,vβjvαi)Tβj. $

    Hence, we attain that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ 12dD2Vαdt=vαMtvαmt,˙vαMt˙vαmt=vαMtvαmt,κ1NNαj=1ϕαMtj(vαjvαMt,vαjvαMtTαj)κ1NNαj=1ϕαmtj(vαjvαmt,vαjvαmtTαj)+vαMtvαmt,κ1NβαNβj=1ϕ(xαMtxβj)(vβjvαMt,vβjvαMtTβj)κ1NβαNβj=1ϕ(xαmtxβj)(vβjvαmt,vβjvαmtTβj)=:J1+J2. $

    $ (iii) $ (Estimate of $ \mathcal{J}_1 $) In the same way as the proof of Lemma 3.2 of [2], for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ \mathcal{J}_1\leq -\frac{\kappa_1N_\alpha}{N}\left(\frac{\phi(D_{X_\alpha})}{T_M^\infty}-\frac{D_{V_\alpha}^2}{2T_m^\infty}\right)D^2_{V_\alpha}. $

    $ (iiii) $ (Estimate of $ \mathcal{J}_2 $) We employ the following identities:

    $ \|{v_{\beta j}-\langle v_{\alpha M_t}, v_{\beta j}\rangle v_{\alpha M_t}}\|\leq 1, \quad \|{v_{\beta j}-\langle v_{\alpha m_t}, v_{\beta j}\rangle v_{\alpha m_t}}\|\leq 1 $

    with Cauchy–Schwarz's inequality and Proposition 2.2 to estimate that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ J2κ1DVαNβαNβj=1ϕ(xαMtxβj)(vβjvαMt,vβjvαMtTβj)+κ1DVαNβαNβj=1ϕ(xαmtxβj)(vβjvαmt,vβjvαmtTβj)2κ1(NNα)ϕMDVαNTm. $

    Then, we combine $ \mathcal{J}_1 $ and $ \mathcal{J}_2 $ to derive that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ dDVαdtκ1NαN(ϕ(DXα)TMD2Vα2Tm)DVα+2κ1(NNα)ϕMNTm. $

    We take the summation from $ \alpha $ = 1 to $ n $ to the above inequality to obtain that

    $ dDVdtκ1min(N1,,Nα)ϕ(DX)NTMDV+κ1max(N1,,Nα)D3V2NTm+2κ1(n1)ϕMTm, $

    because the monotonicity of $ \phi $ implies that

    $ D^3_V\geq \sum\limits_{\alpha}D^3_{V_\alpha}, \quad \min(\phi(D_{X_1}), \cdots, \phi(D_{X_\alpha}))\geq \phi(D_X). $

    Finally, we demonstrate the second assertion.

    Remark 4.1. In Lemma 4.2, the two terms below

    $ κ1min(N1,,Nα)ϕ(DX)NTMDV+κ1max(N1,,Nα)D3V2NTm,κ2min(N1,,Nα)ζ(DX)N(TM)2DT $

    are related to the velocity alignment and temperature equilibrium for each cluster group of system (4.1), respectively. Meanwhile, the following terms in Lemma 4.2

    $ \frac{2({n}-1)\phi_M\kappa_1}{T_m^\infty}, \qquad {2({n}-1)\zeta_M\left(\frac{1}{T_m^\infty}-\frac{1}{T_M^\infty}\right)\kappa_2} $

    show the tendency of the velocities and temperatures of system (4.1) to separated into $ n $ multi-cluster groups in system (4.1).

    This subsection describes suitable sufficient frameworks $ (\mathcal {H}) $ for the multi-cluster flocking estimate and then, under $ (\mathcal {H}) $, we demonstrate the multi-cluster flocking of the proposed system (4.1). For this, we first display the admissible data $ (\mathcal {H}) $ as follows:

    $ (\mathcal {H}): = \{(X(0), V(0), T(0))\in \mathbb{R}^{2dN}\times (\mathbb{R}_{+}-\{0\})^N\; |\; (\mathcal{H}_0), (\mathcal{H}_1), (\mathcal{H}_2)\; \text{and}\; (\mathcal{H}_3)\; \text{hold.}\} $

    $ (i) $ $ (\mathcal{H}_0)\; (\text{Notation}) $: For brevity, we denote the following notation:

    $ Λ:=DV(0)Λ0+4(n1)κ1TmΛ20ϕ(r02)+4(n1)κ1(min1αn1d(Iα,Iα+1))TmΛ0r02ϕ(s)ds,δ(0,1),ˉΛ0:=κ2min(N1,,Nα)ζ(DX)N(TM)2,Λ0:=δκ1min(N1,,Nα)ϕ(DX)NTM,Λα:=κ1NαNTmΛ0+κ1(NNα)NTm(min1αn1d(Iα,Iα+1))r02ϕ(s)ds,r0:=minα<β,i,j(xkβj(0)xkαi(0))for some fixed 1kd. $

    $ (ii) $ $ (\mathcal{H}_1)\; (\text{Well prepared conditions}) $: There exists a strictly positive number $ D_X^\infty > 0 $ such that

    $ D_X^\infty\geq D_X(0)+\Lambda, \quad \mbox{and} \quad \phi\ {\rm{is}}\ {\rm{integrable}}\; \; \text{i.e., }\; \; \|\phi\|_{L^1} < \infty . $

    $ (iii) $ $ (\mathcal{H}_2)\; (\text{Separated initial data}) $: For fixed $ 1\leq k\leq d $ in $ (\mathcal{H}_0) $, there exist real sequences $ ({a_i})^n_{i = 1} $ and $ ({b_i})^n_{i = 1} $ such that the initial data and system parameters are selected to be split suitably as follows:

    $ r0>0,a1<b1<a2<b2<an<bn,Iα:=[aα,bα][1,1],IαIβ=(βα),[vkαi(0)Λα,vkαi(0)+Λα]Iα:=[aα,bα][1,1],α,β=1,,n,i=1,,Nα. $

    $ (iii) $ $ (\mathcal{H}_3)\; (\text{Small fluctuations and coupling strength}) $: The local velocity perturbation for each cluster group and coupling strength are sufficiently small as follows:

    $ 2κ1(1+δ+1)(n1)r02ϕ(s)dsδ(min1αn1d(Iα,Iα+1))Tm<DV(0)2(1δ)ϕ(DX)min(N1,,Nα)Tm(1+δ)max(N1,,Nα)TM. $

    Next, we give a brief comment regarding $ (\mathcal{H}) $. The assumption $ (\mathcal{H}_1) $ is that the sufficient condition guarantees a group formation to each cluster group. Note that $ (\mathcal{H}_2) $ implies that position initial data for each cluster group should be sufficiently separate from each other to verify the multi-cluster flocking result. Indeed, if $ v^k_{\alpha i}(0) $ is covered by $ I_\alpha: = [a_{\alpha}, b_{\alpha}] $, then we take sufficiently small $ \kappa_1 $ so that $ [v^k_{\alpha i}(0)-\Lambda_\alpha, v^k_{\alpha i}(0)+\Lambda_\alpha]\subset I_\alpha $ because $ \Lambda_\alpha $ is linearly proportional to $ \kappa_1 $. $ (\mathcal{H}_3) $ describes that the velocity perturbation between each pair of cluster groups is sufficiently small to deduce the velocity alignment for each cluster group. Here, we can find the admissible data satisfying the assumption $ (H3) $ when $ \kappa_1 $ is sufficiently small. Moreover, under sufficiently large $ r_0 $ and suitable temperature initial data and small coupling strength regime, we can check that the sufficient framework $ (\mathcal {H}) $ is admissible data.

    To prove the multi-cluster flocking result, we define the following set:

    $ S: = \left\{{s} > 0\; \bigg|\; \min\limits_{\alpha\neq\beta, i, j}\|x_{\alpha i}(t)-x_{\beta j}(t)\|\geq \left(\min\limits_{1\leq \alpha\leq n-1}d(I_\alpha, I_{\alpha+1})\right)t+\frac{r_0}{2}, \quad t\in[0, {s})\right\}, $

    where $ d(I_\alpha, I_{\alpha+1}) $ is a distance between adjacent intervals $ I_\alpha $ and $ I_{\alpha+1} $. Herein, we observe that $ S $ is nonempty due to the assumption $ (\mathcal{H}_2) $ and the continuity of $ \|x_{\alpha i}(t)-x_{\beta j}(t)\| $, and we set

    $ \sup{S} = :T^*. $

    Lemma 4.3. Assume that $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ is a solution to the system (4.1). Suppose that $ (\mathcal{H}_0) $, $ (\mathcal{H}_1) $, and $ (\mathcal{H}_3) $ hold. Then, it follows that

    $ DV(t)<(1+δ)DV(0),DX(t)DX,t[0,T]. $ (4.2)

    Proof. First, we consider

    $ S': = \left\{{s} > 0\; \bigg|\; \text{the desired estimates Eq (4.2) hold}, \quad t\in[0, {s}], \quad {s}\leq T^*\right\}. $

    Let $ \sup{S'} = :T^{**} $ and suppose that $ T^{**} < T^{*} $ for the proof by contradiction. Then, one has for $ t\in [0, T^{**}] $, {

    $ D2V(t)(1+δ)D2V(0)2(1δ)ϕ(DX)min(N1,,Nα)Tmmax(N1,,Nα)TM $

    and

    $ κ1min(N1,,Nα)ϕ(DX)NTMκ1min(N1,,Nα)ϕ(DX)NTM. $

    Then, for a.e. $ t\in (0, T^{**}) $, the second assertion of Lemma 4.2 and the above estimates lead to the following inequalities:

    $ dDVdtκ1min(N1,,Nα)ϕ(DX)NTMDV+κ1max(N1,,Nα)D3V2NTm+2κ1(n1)ϕMTmδκ1min(N1,,Nα)ϕ(DX)NTMDV+2κ1(n1)ϕMTm=Λ0DV+2κ1(n1)ϕMTm. $

    This gives from Grönwall's lemma that for $ t\in [0, T^{**}] $,

    $ DV(t)DV(0)exp(Λ0t)+2κ1(n1)TmΛ0exp(Λ02t)ϕ(r02)+2κ1(n1)TmΛ0ϕ((min1αn1d(Iα,Iα+1))t+r02), $ (4.3)

    where we used the definition of $ S $ and the fact that

    $ \phi_M\leq \phi\left(\left(\min\limits_{1\leq \alpha\leq n-1}d(I_\alpha, I_{\alpha+1})\right)t+\frac{r_0}{2}\right). $

    Moreover, we again employ Grönwall's lemma to reach that for $ t\in [0, T^{**}] $,

    $ DV(t)DV(0)exp(Λ0t)+2κ1(n1)(min1αn1d(Iα,Iα+1))Tmr02ϕ(s)ds. $ (4.4)

    Next, using the definition of $ T^{**} $ yields that

    $ D_V^2(T^{**}) = (1+\delta)D_V^2(0)\quad\text{or} \quad D_X(T^{**}) = D_X^\infty. $

    In the former case, it is contradictory to $ (\mathcal{H}_3) $ because inequality (4.4) implies that

    $ DV(T)=1+δDV(0)DV(0)+2κ1(n1)(min1αn1d(Iα,Iα+1))Tmr02ϕ(s)ds. $

    In the latter case, we estimate from inequality (4.3) that for $ t\in [0, T^{**}] $,

    $ DX(t)DX(0)+t0DV(s)dsDX(0)+t0[DV(0)exp(Λ0s)+2κ1(n1)TmΛ0exp(Λ02s)ϕ(r02)+2κ1(n1)TmΛ0ϕ((min1αn1d(Iα,Iα+1))s+r02)]ds<DX(0)+ΛDX. $ (4.5)

    Accordingly, $ D_X(T^{**}) < D_X^\infty $, which is contradictory. Finally, $ \sup S' = T^{**} = T^* $. We have reached the desired lemma.

    Subsequently, we claim that $ T^* = \infty $, which is crucial to derive the multi-cluster flocking estimate of the system (4.1).

    Theorem 4.1. Following Lemma 4.3, we further assume that $ (\mathcal{H}_2) $ holds. Then, we get that

    $ T^* = \infty. $

    This is equivalent to

    $ \min\limits_{\alpha\neq\beta, i, j}\|x_{\alpha i}(t)-x_{\beta j}(t)\|\geq \left(\min\limits_{1\leq \alpha\leq n-1}d(I_\alpha, I_{\alpha+1})\right)t+\frac{r_0}{2}, \quad t\in \mathbb{R}_+. $

    Proof. For the proof by contradiction, suppose that $ T^* < \infty $. From the definition of $ S $, we select four indices that satisfy

    $ 1\leq \alpha^* < \beta^*\leq n, \quad i^*\in\{1, \cdots, N_{\alpha^*}\} \quad \mbox{and} \quad j^*\in\{1, \cdots, N_{\beta^*}\} $

    such that

    $ \|x_{\alpha^* i^*}(T^*)-x_{\beta^* j^*}(T^*)\| = \left(\min\limits_{1\leq \alpha\leq n-1}d(I_\alpha, I_{\alpha+1})\right)T^*+\frac{r_0}{2}. $

    Then, we show that for the $ k\in \{1, \cdots, d\} $ chosen in $ (\mathcal{H}_0) $,

    $ xαi(T)xβj(T)xkβj(T)xkαi(T)=xkβj(0)xkαi(0)+T0(vkβj(t)vkαi(t))dtr0+T0(vkβj(t)vkαi(t))dt. $

    Next, we integrate system (4.1b) and employ the following relation:

    $ \|v_{\alpha j}-\langle v_{\alpha i}, v_{\alpha j} \rangle v_{\alpha i}\|^2 = 1-\langle v_{\alpha i}, v_{\alpha j}\rangle^2 = (1-\langle v_{\alpha i}, v_{\alpha j} \rangle)(1+\langle v_{\alpha i}, v_{\alpha j}\rangle)\leq D^2_{V_\alpha} $

    to attain that for $ t\in [0, T^*] $,

    $ |vkαi(t)vkαi(0)|vαi(t)vαi(0)t0˙vαidsκ1NαNTmt0DVα(s)ds+κ1(NNα)NTmt0ϕM(s)dsκ1NαNTm0DVα(s)ds+κ1(NNα)NTm0ϕ(min1αn1d(Iα,Iα+1)s+r02)dsκ1NαNTm0DV(s)ds+κ1(NNα)NTm0ϕ(min1αn1d(Iα,Iα+1)s+r02)dsκ1NαNTmΛ+κ1(NNα)NTm0ϕ(min1αn1d(Iα,Iα+1)s+r02)ds=κ1NαNTmΛ+κ1(NNα)NTm(min1αn1d(Iα,Iα+1))r02ϕ(s)ds=:Λα, $

    where we used $ \phi\leq 1 $, $ \|v_{\beta j}-\langle v_{\alpha i}, v_{\beta j} \rangle v_{\alpha i}\|\leq 1 $, and $ \Lambda $ was estimated in inequality (4.5). Therefore, it follows by $ (\mathcal{H}_2) $ that for $ \alpha = 1, \cdots, n $,

    $ vkαi(0)+Λαvkαi(0)+|vkαi(t)vkαi(0)|vkαi(t)=vkαi(0)+vkαi(t)vkαi(0)vkαi(0)|vkαi(t)vkαi(0)|vkαi(0)Λαvkαi(t)Iα. $

    Then, we derive that using the assumption $ (\mathcal{H}_2) $,

    $ xαi(T)xβj(T)r0+T0(vkβj(t)vkαi(t))dt>r02+min1αn1d(Iα,Iα+1)T, $

    which gives a contradiction to $ T^* < \infty $. Consequently, we conclude that $ T^* = \infty. $

    Now, we are ready to prove the multi-cluster flocking dynamics under sufficient framework $ (\mathcal{H}) $ by applying Lemma 4.3 and Theorem 4.1. In addition, we verify that there exist common velocity and temperature convergence values depending on the decay rates of the integrable communication weights $ \phi $ and $ \zeta $, respectively, in each cluster group.

    Theorem 4.2. Let $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ be a solution to the system (4.1) and suppose that the frameworks $ (\mathcal{H}_0) $, $ (\mathcal{H}_1) $, $ (\mathcal{H}_2) $, and $ (\mathcal{H}_3) $ hold. Then, we obtain the following assertions for $ t\in \mathbb{R}_+ $:

    1. (Velocity alignment for each cluster group)

    $ DV(t)DV(0)exp(Λ0t)+2κ1(n1)TmΛ0exp(Λ02t)ϕ(r02)+2κ1(n1)TmΛ0ϕ((min1αn1d(Iα,Iα+1))t+r02). $

    2. (Temperature equilibrium for each cluster group)

    $ DT(t)DT(0)exp(ˉΛ0t)+2κ2(n1)(1Tm1TM)exp(ˉΛ02t)ζ(r02)+2κ2(n1)(1Tm1TM)ζ((min1αn1d(Iα,Iα+1))t+r02). $

    Proof. We apply the second assertion of Lemma 4.2, the definition of the set $ S $, and Theorem 4.1 to have that for a.e. $ t\in \mathbb{R}_+-\{0\} $,

    $ dDVdtΛ0DV+2κ1(n1)TmϕMΛ0DV+2κ1(n1)Tmϕ(r02+min1αn1d(Iα,Iα+1)t). $

    From inequality (4.3), we recall that for $ t\in \mathbb{R}_+ $,

    $ DV(t)DV(0)exp(Λ0t)+2κ1(n1)TmΛ0exp(Λ02t)ϕ(r02)+2κ1(n1)TmΛ0ϕ((min1αn1d(Iα,Iα+1))t+r02). $

    Hence, we reach the desired first assertion. To prove the second assertion, we employ the third assertion of Lemma 4.2, Theorem 4.1, and the second assertion of Lemma 4.3 to get that for a.e. $ t\in \mathbb{R}_+ -\{0\} $,

    $ dDTdtκ2min(N1,,Nα)ζ(DX)N(TM)2DT+2κ2(n1)ζM(1Tm1TM)ˉΛ0DT+2κ2(n1)(1Tm1TM)ζ((min1αn1d(Iα,Iα+1))t+r02). $

    We use Grönwall's lemma to yield that for $ t\in \mathbb{R}_+ $,

    $ DT(t)DT(0)exp(ˉΛ0t)+2κ2(n1)(1Tm1TM)exp(ˉΛ02t)ζ(r02)+2κ2(n1)(1Tm1TM)ζ((min1αn1d(Iα,Iα+1))t+r02). $

    We conclude the desired second assertion.

    As a direct consequence, we present the following result that the velocity and temperature of each agent in each cluster group converge to some same nonnegative value, respectively:

    Corollary 4.1. Assume that $ Z_\alpha = \{(x_{\alpha i}, v_{\alpha i}, T_{\alpha i})\}_{i = 1}^{N_\alpha} $ is a solution to system (4.1). Then, under the sufficient frameworks $ (\mathcal{H}_0) $, $ (\mathcal{H}_1) $, $ (\mathcal{H}_2) $, and $ (\mathcal{H}_3) $, there exist some convergence values $ v_{\alpha}^\infty $ and $ T_{\alpha}^\infty $ for $ \alpha = 1, \cdots, n $ that satisfy that for $ t\in \mathbb{R}_+ $,

    1. (Velocity convergence value for each cluster group)

    $ vαi(t)vα=O(exp(Λ02t)+ϕ((min1αn1d(Iα,Iα+1))s+r02)+tϕ((min1αn1d(Iα,Iα+1))s+r02)ds). $

    2. (Temperature convergence value for each cluster group)

    $ |Tαi(t)Tα|=O(exp(ˉΛ02t)+ζ((min1αn1d(Iα,Iα+1))s+r02)+tζ((min1αn1d(Iα,Iα+1))s+r02)ds). $

    Proof. Remember from Lemma 4.1 that

    $ Nα˙vcenα=κ1NNαi=1Nαj=1ϕ(xαixαj)vαivαjvαi22Tαj+κ1NNαi=1Nβj=1ϕ(xαixβj)(vβjvαi+vαivβkvαi22)1Tβj. $

    If we denote $ v_\alpha^\infty $ as

    $ vα:=limtvcenα(t)=vcenα(0)+κ1NNαNαi=1Nαj=10ϕ(xαixαj)vαivαjvαi22Tαj+κ1NNαNαi=1Nβj=10ϕ(xαixβj)(vβjvαi+vαivβjvαi22)1Tβj, $

    then we have that

    $ vcenα(t)vακ1NNαNαi=1Nαj=1tϕ(xαixαj)vαivαjvαi22Tαj+κ1NNαNαi=1Nβj=1tϕ(xαixβj)(vβjvαi+vαivβjvαi22)1Tβj $

    because

    $ vcenα=vcenα(0)+κ1NNαNαi=1Nαj=1t0ϕ(xαixαj)vαivαjvαi22Tαjds+κ1NNαNαi=1Nβj=1t0ϕ(xαixβj)(vβjvαi+vαivβjvαi22)1Tβjds. $

    Then, the multi-flocking estimate studied in Theorem 4.1 and the monotonicity and non-negativity of $ \phi $ imply that

    $ \|v_{\alpha}^{cen}(t)-v^\infty_{\alpha}\| = \mathcal{O}\left(\exp\left(-\Lambda_0t\right)+\int_{t}^\infty \phi\left(\frac{\left(\min\nolimits_{1\leq \alpha\leq n-1}d(I_\alpha, I_{\alpha+1})\right)s+r_0}{2}\right) ds\right). $

    Subsequently, we recall from Theorem 4.1 that

    $ vαi(t)vcenα(t)=O(exp(Λ02t)+ϕ((min1αn1d(Iα,Iα+1))s+r02)). $

    We combine the above estimates to derive that for $ \alpha = 1, \cdots, n $,

    $ vαi(t)vα=O(exp(Λ02t)+ϕ((min1αn1d(Iα,Iα+1))s+r02)+tϕ((min1αn1d(Iα,Iα+1))s+r02)ds). $

    Similar to the above, there exists some positive value $ T_\alpha^\infty $ such that for $ \alpha = 1, \cdots, n $,

    $ |Tαi(t)Tα|=O(exp(ˉΛ02t)+ζ((min1αn1d(Iα,Iα+1))s+r02)+tζ((min1αn1d(Iα,Iα+1))s+r02)ds). $

    We conclude the desired results.

    In this paper, we have demonstrated various sufficient frameworks regarding the mono-cluster flocking, the non-emergence of mono-cluster flocking, and multi-cluster flocking of the TCSUS system. First, we presented the admissible data for the mono-cluster flocking of TCSUS to occur. From the result, we observed that the mono-cluster flocking occurs when the coupling strength is large enough, and then we were interested in how small the coupling strength must be to avoid mono-cluster flocking emerging. Second, we verified that if the coupling strength is smaller than some appropriate value in the TCSUS model with an integrable communication weight $ \phi $, then the mixed configuration gradually becomes separated after some time, and then each sub-ensemble simultaneously moves away linearly as the time increases. Hence, this showed the non-emergence of the mono-cluster flocking to the system. However, when $ \phi $ is non-integrable, we did not provide a suitable sufficient framework for the non-emergence of the mono-cluster flocking and we only gave a sufficient condition independent of the coupling strength for mono-cluster flocking to occur. Third, employing the spatial separation $ r_0 $ and velocity separations $ I_\alpha $'s, when the initial configuration is well separated given similar to multi-cluster, we proved that the multi-cluster flocking holds in the system with an integrable $ \phi $. The novelty of this paper is that we have extended the multi-cluster flocking of system (1.2) (see [29]) to a temperature field and generalize the bi-cluster flocking of system (1.5) (see [2]) to the multi-cluster flocking. We were unable to demonstrate a sufficient framework where the multi-cluster flocking emerges in a mixed initial configuration (not well separated) rather than from the multi-cluster flocking under the conditions such that the initial configuration is well separated could be an interesting research topic. This issue is left for future work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The work of H. Ahn was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1C12007321).

    The authors declare there is no conflict of interest.

    [1] Nations U (2013) World Population Ageing. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:World+Population+Ageing+2013#7.
    [2] Censo (2010) Argentina. Available from: http://www.censo2010.indec.gov.ar/.
    [3] Bettelli G (2011) Preoperative evaluation in geriatric surgery : comorbidity, functional status. Minerva anestesiologica 77: 637-646.
    [4] Fried LP, Tangen CM, Walston J, et al. (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56: M146-156. doi: 10.1093/gerona/56.3.M146
    [5] Grimby G, Saltin B (1983) The ageing muscle. Clin Physiol 3: 209-218. doi: 10.1111/j.1475-097X.1983.tb00704.x
    [6] Morley JE (2008) Sarcopenia: Diagnosis and treatment. J Nutr Heal Aging 12: 452-456.
    [7] Peterson MJ, Giuliani C, Morey MC, et al. (2009) Physical activity as a preventative factor for frailty: The health, aging, and body composition study. J Gerontol Ser A Biol Sci Med Sci 64: 61-68.
    [8] Puetz TW (2006) Physical activity and feelings of energy and fatigue: Epidemiological evidence. Sport Med 36: 767-780. doi: 10.2165/00007256-200636090-00004
    [9] Puetz TW, Flowers SS, O’Connor PJ (2008) A randomized controlled trial of the effect of aerobic exercise training on feelings of energy and fatigue in sedentary young adults with persistent fatigue. Psychother Psychosom 77: 167-174. doi: 10.1159/000116610
    [10] Baumgartner RN, Koehler KM, Gallagher D, et al. (1998) Epidemiology of sarcopenia among the elderly in New Mexico.Am J Epidemiol 147: 755-763. doi: 10.1093/oxfordjournals.aje.a009520
    [11] Henwood TR, Riek S, Taaffe DR (2008) Strength versus muscle power-specific resistance training in community-dwelling older adults. J Gerontol A Biol Sci Med Sci 63: 83-91. doi: 10.1093/gerona/63.1.83
    [12] Englund U, Littbrand H, Sondell A, et al. (2005) A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int 16: 1117-1123. doi: 10.1007/s00198-004-1821-0
    [13] Liu C-J, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev: CD002759.
    [14] Rantanen T, Guralnik JM, Foley D, et al. (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281: 558-560. doi: 10.1001/jama.281.6.558
    [15] Pate RR, Pratt M, Blair SN, et al. (1995) Physical activity and public health. A recommendation from the centers for disease control and prevention and the american college of sports medicine. JAMA: 402-407.
    [16] Rydwik E, Lammes E, Frändin K, et al. (2008) Effects of a physical and nutritional intervention program for frail elderly people over age 75. A randomized controlled pilot treatment trial. Aging Clin Exp Res 20: 159-170.
    [17] King M, Sibbald B, Ward E, et al. (2000) Randomised controlled trial of non-directive counselling, cognitive-behaviour therapy and usual general practitioner care in the management of depression as well as mixed anxiety and depression in primary care. Health Technol Assess 4.
    [18] Cress ME, Buchner DM, Questad K a, et al. (1999) Exercise: effects on physical functional performance in independent older adults. J Gerontol A Biol Sci Med Sci 54: M242-248. doi: 10.1093/gerona/54.5.M242
    [19] Ettinger WH, Burns R, Messier SP, et al. (1997) A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. FAST: 25-31.
    [20] Messier SP, Loeser RF, Mitchell MN, et al. (2000) Exercise and weight loss in obese older adults with knee osteoarthritis: a preliminary study. J Am Geriatrics Soc 48:1062-1072.
    [21] Miszko T a, Cress ME, Slade JM, et al. (2003) Effect of strength and power training on physical function in community-dwelling older adults.J Gerontol A Biol Sci Med Sci 58: 171-175. doi: 10.1093/gerona/58.2.M171
    [22] Gauchard GC, Gangloff P, Jeandel C, et al. (2003) Physical activity improves gaze and posture control in the elderly. Neurosci Res 45: 409-417. doi: 10.1016/S0168-0102(03)00008-7
    [23] Paterson DH, Jones GR, Rice CL (2007) Ageing and physical activity: evidence to develop exercise recommendations for older adults. CanJ public Heal Rev 98 Suppl: 2.
    [24] Kortebein P, Ferrando A, Lombeida J, et al. (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults.JAMA 297: 1772-1774.
    [25] Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39: 412-423. doi: 10.1093/ageing/afq034
    [26] Freiberger E, Sieber C, Pfeifer K (2011) Physical activity, exercise, and sarcopenia—future challenges. Wien Med Wochenschr 161: 416-425.
    [27] Clegg A, Young J, Iliffe S, et al. (2013) Frailty in elderly people. Lancet (London, England) 381: 752-762. doi: 10.1016/S0140-6736(12)62167-9
    [28] Felicio DC, Pereira DS, Assumpção AM, et al. (2014) Inflammatory mediators, muscle and functional performance of community-dwelling elderly women. Arch Gerontol Geriatr59: 549-553
    [29] Smietniansky M, Perrota M, Saadi JM (2015) Impacto de una Consulta Geriátrica en el Proceso de Toma de Decisiones en Pacientes con Cáncer Ginecológico. Congreso Argentino de Ginecología Oncológica: 289-296.
    [30] Smietniansky M, Cal M (2015) Impact of a geriatric consultation in decision-making in elderly patients with severe aortic stenosis candidates for TAVI. An Sci Meeting AGS.
    [31] Mijnarends DM, Meijers JMM, Halfens RJG, et al. (2013) Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: A systematic review. J Am Med Dir Assoc 14: 170-178. doi: 10.1016/j.jamda.2012.10.009
    [32] Legrand D, Vaes B, Matheï C, et al. (2014) Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc62: 1030-1038.
    [33] Bijlsma AY, Pasma JH, Lambers D, et al. (2013) Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients. J Am Med Dir Assoc 14: 493-498.
    [34] Afilalo J, Eisenberg MJ, Morin J-F, et al. (2010) Gait speed as an incremental predictor of mortality and major morbidity in elderly patients undergoing cardiac surgery. J Am Coll Cardiol56: 1668-1676.
    [35] Vasunilashorn S, Coppin AK, Patel K V, et al. (2009) Use of the short physical performance battery score to predict loss of ability to walk 400 meters: Analysis from the InCHIANTI study. J Gerontol-Ser A Biol Sci Med Sci 64: 223-229.
    [36] Spruit MA, Sillen MJH, Groenen MTJ, et al. (2013) New Normative values for handgrip strength: results from the uk biobank. J Am Med Dir Assoc 14: 775.e5-e11
    [37] Hasselager R, G genur I (2014) Core muscle size assessed by perioperative abdominal CT scan is related to mortality, postoperative complications, and hospitalization after major abdominal surgery: A systematic review. Langenbeck’s Arch Surg: 1-9.
    [38] Cooper R, Hardy R, Sayer A, et al. (2011) Age and gender differences in physical capability levels from mid-life onwards: The harmonisation and meta-analysis of data from eight UK cohort studies. PLoS One 6.
    [39] Hardy R, Cooper R, Aihie Sayer A, et al. (2013) Body mass index, muscle strength and physical performance in older adults from eight cohort studies: the halcyon programme. PLoS One 8: e56483. Available from: http://dx.plos.org/10.1371/journal.pone.0056483.
    [40] Savela SL, Koistinen P, Stenholm S, et al. (2013) Leisure-time physical activity in midlife is related to old age frailty.J Gerontol-Ser A Biol Sci Med Sci 68: 1433-1438. doi: 10.1093/gerona/glt029
    [41] Katzmarzyk PT, Church TS, Craig CL, et al. (2009) Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc 41: 998-1005. doi: 10.1249/MSS.0b013e3181930355
    [42] Saltin B, Grimby G (1968) Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38: 1104-1115.
    [43] Rödjer L, Jonsdottir IH, Rosengren A, et al. (2012) Self-reported leisure time physical activity: A useful assessment tool in everyday health care. BMC Public Health 12: 693. doi: 10.1186/1471-2458-12-693
    [44] Centers for Disease Control and Prevention. U.S. Physical Activity Statistics. 2007. Department of Health and Human Services. Available from: http://apps.nccd.cdc.gov/PASurveillance/StateSumResultV.asp?CI=&Year=2007&State=0#data.
    [45] US Department of Health & Human Services. Physical guidelines for American. 2010. Available at: http://www.healthypeople. gov/ default.htm. Accessed August 28th 2010.
    [46] Keysor JJ (2003) Does late-life physical activity or exercise prevent or minimize disablement? A critical review of the scientific evidence. Am J Prev Med 25: 129-136.
    [47] Cesari M, Vellas B, Hsu F-C, et al. (2015) A physical activity intervention to treat the frailty syndrome in older persons-results from the LIFE-P study. J Gerontol A Biol Sci Med Sci70: 216-222.
    [48] Liu CK, Leng X, Hsu FC, et al. (2014) The impact of sarcopenia on a physical activity intervention: The lifestyle interventions and independence for elders pilot study (LIFE-P). J Nutr Heal Aging 18: 59-64. doi: 10.1007/s12603-013-0369-0
    [49] Giné-Garriga M, Roqué-Fíguls M, Coll-Planas L, et al. (2014) Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: A systematic review and meta-analysis.Arch Phys Med Rehabil.95: 753-769.
    [50] Stewart VH, Saunders DH, Greig CA (2014) Responsiveness of muscle size and strength to physical training in very elderly people: A systematic review. Scand J Med Sci Sports 24: e1-10.
    [51] Fiatarone MA, O’Neill EF, Ryan ND, et al. (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. The New England J Med 330: 1769-1775.
    [52] Galvão DA, Taaffe DR, Spry N, et al. (2010) Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: A randomized controlled trial.J Clin Oncol28: 340-347.
  • This article has been cited by:

    1. Shenglun Yan, Wanqian Zhang, Weiyuan Zou, Multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint under a singular kernel, 2024, 19, 1556-1801, 547, 10.3934/nhm.2024024
    2. Seung-Yeal Ha, Guanghui Jin, Youwei Ma, Wook Yoon, Emergent behaviors of two thermodynamically consistent inertial spin models, 2024, 34, 1054-1500, 10.1063/5.0223494
    3. Jeong Seok Han, Woojoo Shim, Hyunjin Ahn, Global-In-Time Discrete Approximation of the Cucker–Smale Model with a Unit Speed Constraint, 2025, 192, 1572-9613, 10.1007/s10955-025-03397-x
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6914) PDF downloads(1283) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog