Processing math: 100%
Research article Special Issues

Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak

  • Received: 11 February 2020 Accepted: 06 March 2020 Published: 10 March 2020
  • The 2019 novel coronavirus disease (COVID-19) is running rampantly in China and is swiftly spreading to other countries in the world, which causes a great concern on the global public health. The absence of specific therapeutic treatment or effective vaccine against COVID-19 call for other avenues of the prevention and control measures. Media reporting is thought to be effective to curb the spreading of an emergency disease in the early stage. Cross-correlation analysis based on our collected data demonstrated a strong correlation between media data and the infection case data. Thus we proposed a deterministic dynamical model to examine the interaction of the disease progression and the media reports and to investigate the effectiveness of media reporting on mitigating the spread of COVID-19. The basic reproduction number was estimated as 5.3167 through parameterization of the model with the number of cumulative confirmed cases, the number of cumulative deaths and the daily number of media items. Sensitivity analysis suggested that, during the early phase of the COVID-19 outbreak, enhancing the response rate of the media reporting to the severity of COVID-19, and enhancing the response rate of the public awareness to the media reports, both can bring forward the peak time and reduce the peak size of the infection significantly. These findings suggested that besides improving the medical levels, media coverage can be considered as an effective way to mitigate the disease spreading during the initial stage of an outbreak.

    Citation: Weike Zhou, Aili Wang, Fan Xia, Yanni Xiao, Sanyi Tang. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2693-2707. doi: 10.3934/mbe.2020147

    Related Papers:

    [1] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [2] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [3] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995
    [4] James M. Hyman, Jia Li . Differential susceptibility and infectivity epidemic models. Mathematical Biosciences and Engineering, 2006, 3(1): 89-100. doi: 10.3934/mbe.2006.3.89
    [5] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [6] C. Connell McCluskey . Global stability of an SIR epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
    [7] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [8] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [9] Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225
    [10] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
  • The 2019 novel coronavirus disease (COVID-19) is running rampantly in China and is swiftly spreading to other countries in the world, which causes a great concern on the global public health. The absence of specific therapeutic treatment or effective vaccine against COVID-19 call for other avenues of the prevention and control measures. Media reporting is thought to be effective to curb the spreading of an emergency disease in the early stage. Cross-correlation analysis based on our collected data demonstrated a strong correlation between media data and the infection case data. Thus we proposed a deterministic dynamical model to examine the interaction of the disease progression and the media reports and to investigate the effectiveness of media reporting on mitigating the spread of COVID-19. The basic reproduction number was estimated as 5.3167 through parameterization of the model with the number of cumulative confirmed cases, the number of cumulative deaths and the daily number of media items. Sensitivity analysis suggested that, during the early phase of the COVID-19 outbreak, enhancing the response rate of the media reporting to the severity of COVID-19, and enhancing the response rate of the public awareness to the media reports, both can bring forward the peak time and reduce the peak size of the infection significantly. These findings suggested that besides improving the medical levels, media coverage can be considered as an effective way to mitigate the disease spreading during the initial stage of an outbreak.


    1. Introduction

    Acute Rheumatic Fever (ARF) is a multisystemic disease that results from an autoimmune reaction due to group A streptococcal infection. It occurs mainly in school-age children and young adults [1]. The most common and specific clinical manifestations of the disease affect joints, heart, brain, cutaneous and subcutaneous, and include polyarthritis, carditis, chorea, appearance of subcutaneous nodules and erythema or rash [2]. The most significant complication is cardiac involvement, also defined as Rheumatoid Cardiopathy (RC). The most important of its heart clinical manifestations are largely characterised by valvulitis, involving in particular the mitral valve and aortic valve, with chronic and disabling consequences.

    Although the incidence and prevalence of ARF and RC are declining in developed Countries since the early 1900s, they continue to be the main causes of morbidity and mortality among young people in developing Countries. It has been estimated that there are over 15 million RC cases worldwide, with 282,000 new cases and 233,000 deaths each year [1]. Acute Rheumatic Fever affects predominantly children aged between 5 and 15 years of age. Initial episodes become less frequent in adolescents and young adults, and are rare in individuals over the age of 30; about 60% of people with ARF in endemic communities subsequently develop RC [3,4]. The risk of ARF is fundamentally overlapping in males and females, but the risk of rheumatic carditis is 1.6 to 2.0 times higher in women [4,5]. The latest estimates of the global number of rheumatoid cardiovascular patients include 9 million years of life lost adjusted for disability, 33 million prevalent cases and 275,000 deaths each year, which occur predominantly in low and middle-income countries [6,7,8]. RC prevalence increases with age [9], depending on adherence to secondary prophylaxis, severity of valve damage, access to specialist management and surgery [10,11]. Acute Rheumatic Fever epidemiology varies from country to country [10], with a particularly high prevalence in Africa [12,13,14] and in the Pacific [15,16,17,18], in Latin America [19], the Middle East [20,21] and in Asia [22,23]. However, to date there is a paucity of updated data for several countries, including Italy. In this sense, updated data and both clinical and epidemiological characterization of the disease represent a major need for promoting preventive health strategies, quantifying national public health financial planning and, finally, reducing the burden of disease. According to the previous considerations, the main aim of this study was to examine the hospitalization rate attributable to ARF and describe its epidemiological characteristics in the paediatric population in Lombardy, the most populous region of Italy, during the 2014-2016 period.


    2. Material and methods

    Lombardy is one of the twenty administrative regions of Italy; it is sited in the northwest of the country, with an area of 23,844 square kilometres (9,206 sq. mi) and about 10 million people (population of 10,023,876 to 1 January 2017 from ISTAT data), representing one-sixth of Italy's population. Lombardy's capital is the second-largest city and the largest metropolitan area in Italy.

    The study included a three-year timeframe, from January 1, 2014 to December 31, 2016. Subjects affected by ARF were identified by analysing hospital discharge records (HDRs) collected from all hospitals located in Italy and included in the Italian National Health Service. All data included in the analyses were obtained by the Italian Ministry of Health, which routinely collects HDRs from all the regions' hospitals. According to the national laws and considering that data were provided as anonymous records, individual consent was not required. Each HDR included demographic information (residence, gender, and date of birth), admission and discharge dates, discharge status (categorized as “discharged/transferred” or “expired”), and up to 6 discharge diagnoses (1 principal and 5 secondary diagnoses) coded according to International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9 CM).

    ARF cases were defined according to the following inclusion criteria: (a) occurrence of at least one ICD9-CM code of 390, 391.0, 391.1, 391.2, 391.8, 391.9, 392.0, 392.9, 393, 394.1, 395.0, 395.1, 395.2, 397.1, 397.9, 398.0, 398.90, 398.91, 398.99 either as principal or secondary diagnosis; (b) age < 18 years old; (c) resident of Lombardy. Hospitalization of Lombardy residents that occurred outside the region was also included in the analysis, while multiple hospitalizations due to transfers were combined. Admissions for transferred patients were followed until discharge. The following variables have been analyzed: age, sex, municipality of residence, date of diagnosis of each patient, hospital of admission, and presentation of the disease.

    Statistical analyses were performed using the computing environment R (R Development Core Team, 2005) and maps were produced by ArcGIS (version 10.5.1 2016). Standard deviation was calculated for normally distributed quantitative variables. Hospitalization rates were calculated by dividing the number of hospitalizations by age cohort and then multiplying the quotient by 100,000. Two-sided P values and 95 percent confidence intervals were used to evaluate differences between males and females.


    3. Results

    From 2014 to 2016, 215 patients were found to meet the inclusion criteria and diagnosed as affected from Acute Rheumatic Fever. As reported in Table 1 and depicted in Figure 1, Milan was the first province for number of cases, accounting for 102 cases, followed by Varese: 22 cases, Como: 17 cases, Monza Brianza: 16 cases, Bergamo: 15 cases, Brescia: 13 cases, Lecco: 12 cases, Pavia: 9 cases, Lodi: 4 cases, Sondrio and Mantua (Mantova): 2 cases for province, and finally the Province of Cremona with only 1 case in three years.

    The hospitalization rate (cases/100,000 paediatric population) of ARF in Lombardy showed a slightly increasing trend from 2014 to 2016, from 3.42 cases in 2014 to about 5.0 cases in 2016. The mean age for patients was equal to 8.2 years (SD 3.1 years): 9.1 years in 2014, 10.3 years in 2015 and 7.4 years in 2016. As reported in Figure 2, 30 patients were younger than 5 years of age, accounting for 14% of the total (215 in Lombardy residents). Hospitalization rates were not statistically significantly different between males and females (4.45/100,000 vs. 4.30/100,000, respectively). Moreover, illness presented a typical seasonal trend with lower cases in autumn and then a steadily rises to its peak in April (Figure 3).

    In 2014, the highest number of hospitalizations were diagnosed with “Chorea Rheumatic without mention of Cardiac Complications” (20% of total admissions) and “Chorea Rheumatic with Cardiac Complications” (18%) followed by “Acute Rheumatoid Endocarditis” (15%) and “Rheumatic Fever without mention of Cardiac Involvement” (10%).

    In 2015, the diagnosis of “Acute Rheumatic Endocarditis” prevailed (17.7% of total admissions) followed by “Rheumatic Chorea without mention of Cardiac Complications” and “Rheumatic Fever without mention of Cardiac Involvement” (both 15.2%), and “Rheumatic Mitral Insufficiency” and “Unspecified acute Rheumatic Cardiac Disease” (12.7%).

    In 2016, most patients were diagnosed with “Acute Rheumatic Endocarditis” (23.8% of total admissions), “Rheumatic Fever without Cardiac Complications” (16.7%) and “Chorea Rheumatic with Cardiac Complications” (14.3%).

    Table 1. Summary of rates of incidence of paediatric Acute Rheumatic Fever per 100,000 residents.
    Province 2014 2015 2016 2014-2016
    Population Cases Rate * 100.000 Population Cases Rate * 100.000 Population Cases Rate * 100.000 Population Cases Rate * 100.000
    LECCO 58.572 4 6,83 57.979 5 8,62 57.389 3 5,23 173.940 12 6,9
    MILANO 529.174 25 4,72 527.147 44 8,35 529.011 33 6,24 1.585.332 102 6,43
    COMO 101.075 1 0,99 100.825 3 2,98 100.227 13 12,97 302.127 17 5,63
    VARESE 148.170 5 3,37 148.273 7 4,72 147.985 10 6,76 444.428 22 4,95
    PAVIA 82.862 5 6,03 82.762 1 1,21 82.497 3 3,64 248.121 9 3,63
    MONZA BRIANZA 148.994 9 6,04 148.884 2 1,34 148.826 5 3,36 446.704 16 3,58
    LODI 39.094 0 0 39.021 1 2,56 38.867 3 7,72 116.982 4 3,42
    BERGAMO 203.630 4 1,96 202.890 2 0,99 201.212 9 4,47 607.732 15 2,47
    SONDRIO 30.247 0 0 29.880 1 3,35 29.561 1 3,38 89.688 2 2,23
    BRESCIA 228.002 3 1,32 226.986 7 3,08 225.196 3 1,33 680.184 13 1,91
    MANTUA 68.171 1 1,47 67.988 0 0 67.433 1 1,48 203.592 2 0,98
    CREMONA 57.783 1 1,73 57.492 0 0 57.115 0 0 172.390 1 0,58
    LOMBARDIA 1.695.774 58 3,42 1.690.127 73 4,32 1.685.319 84 4,98 5.071.220 215 4,24
    ↑: high incidence rate by column, ↓: low incidence rate by column.
     | Show Table
    DownLoad: CSV
    Figure 1. Geographic distribution of paediatric rheumatic cases in Lombardy (2014-2016).

    Figure 2. Number of hospital admissions divided by age and sex.

    Figure 3. Number of hospital admissions divided by month of hospitalization in all patients (A) and in males vs females (B).


    4. Discussion

    Acute Rheumatic Fever (ARF) confirms to be still a current public health problem in Italy and to date it can be not considered a negligible disease in developed Countries. The real doubt is, therefore, if it can be considered a neglected disease. The question is difficult to answer but this study offers some findings that could help to clarify epidemiology of ARF among Italian paediatric population requiring hospitalization. A first finding of interest is that a significant number of paediatric ARF cases were recorded during each of all three years of the study, showing also an increasing trend from 2014 to 2016. We are well aware that three years are probably too short a period for evaluating trend but, noteworthy, there was no year without cases, suggesting that in Lombardy ARF shows to have the characteristics of an “endemic” disease with low incidence. Moreover, if the observed trend should be confirmed in future years, it would represent an inversion with respect to the past century when a decline in the incidence of acute rheumatic fever in developed countries has been observed as consequence of improved public hygiene and widespread use of antibiotics. To date, ARF seems to be a rare but not negligible disease not only in Lombardy, where we estimated about 4 cases per 100,000 children requiring hospitalization because of ARF or ARF complications, but also in other European countries. In this sense, our estimates are quite similar to those observed in Abruzzo, another Italian region, in the period 2000-2009, where 88 cases were found with an average annual incidence rate of 4.10 cases for 100,000 years-child [5]. Otherwise, the recent ARF outbreak in Slovenia revealed that the disease is still present in southern central Europe with an estimated annual incidence of 1.25 cases per 100,000 children [24]. These last data seem to be lower than those reported in our experience and in the other study previously cited and carried out in Abruzzo. The reasons for this difference could be attributed, at least in part, to the different study methods and we cannot exclude that some ARF cases reported in our study are not incident cases but prevalent ones. However, this hypothesis would explain only a limited part of the difference and further investigations may be required for clarifying these regional variations.

    Differently, no significant regional variations with respect to other studies were found in distribution of ARF complications. Our data showed that rheumatic carditis was the most frequent complication accounting for 61% of all diagnosis, which is similar to the other published data, in which it ranges from 45% to 95% [25,26]. Also the increase in the rate of hospitalization of patients with ARF, from March to July, with a peak in April and a second mild peak in November has been reported by other authors and it is in agreement with the seasonal variability of pharyngitis, which is caused by group A beta-haemolytic streptococci and is most often diagnosed in the winter and spring [27] or in the fall and winter [28,29]. Sydenham's chorea was reported in 26% of cases, although some authors observed rates to a minimum of 15-17% [30]. Some publications indicate rates of 6-31% and even 49% [31].

    Finally, the mean age of patients with ARF in our study corresponds to the age reported by other authors [32]. Our study could be affected by some limitations that should be taken into account as the possibility that some ARF cases have not been hospitalized and thus not included in our analysis. Moreover, the lack of information about patient nationality could have underestimated the contribution of immigration in a region as Lombardy that, in the past decades, has received a very high number of people especially from Africa [12,13,14]. Unfortunately, the precise picture of the disease burden attributable to this microorganism is difficult to quantify, especially in contexts such as the Italian one, where ARF is not included among the diseases subject to notification. In such a context, hospital discharge databases may be the only way to understand, accurately and economically, the epidemiology of this disease. Despite these possible limitations, at our best knowledge this is the largest population study carried out in an Italian region. Two main messages come from our experience. The first is that ARF is a disease that cannot be considered eliminated in Lombardy and the second one is that, surprisingly, an increasing trend should stimulate further studies on this topic.


    5. Conclusion

    AFR is one of the main causes of heart disease among young people and it is still present in developing countries, but not only in these. In recent decades, there has been a new increase in ARF incidence in European countries and results obtained in the present study unquestionably agree with this datum. The increasing trend that we have found also suggests the needs for multidisciplinary, specialist, paediatric approach involving several professionals who, in addition to the paediatrician of free choice, promote evidence based medicine management of the disease during all phases of ARF. The involvement of the paediatrician is fundamental, both to prevent the disease and to follow the young patients affected by this disease. Every paediatrician should always bear in mind the risk of ARF and, therefore, should not underestimate even first symptoms attributable to a possible infection with group A beta-hemolytic Streptococcus.

    However, ARF management, which involves patients since their childhood, requires coordination, often throughout life, between prevention, diagnosis, treatment, psychological, rehabilitative and social assistance. For these reasons, it will be essential to develop appropriate tools for organization and communication in this area.


    Conflicts of interest

    The authors declare no conflicts of interest in this paper.




    [1] Wuhan Municipal Health Commission, available from: http://wjw.wuhan.gov.cn/front/web/showDetail/2020010309017 (accessed on 8 February 2020).
    [2] World Health Organization, available from: https://www.who.int/health-topics/coronavirus (accessed on 8 February 2020).
    [3] P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, et al., Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin, BioRxiv, (2020). doi: 10.1101/2020.01.22.914952.
    [4] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497-506.
    [5] National Health Commission of the People's Republic of China, available from: http://www.nhc.gov.cn/xcs/yqtb/202002/6c305f6d70f545d59548ba17d79b8229.shtml (accessed on 8 February 2020).
    [6] National Health Commission of the People's Republic of China, available from: http://www.nhc.gov.cn/xcs/zhengcwj/202002/18c1bb43965a4492907957875de02ae7.shtml (accessed on 8 February 2020).
    [7] I. S. Kristiansen, P. A. Halvorsen, D. Gyrd-Hansen, Influenza pandemic: perception of risk and individual precautions in a general population, Cross sectional study, BMC Public Health, 7 (2007), 48.
    [8] U. C. de Silva, J. Warachit, S. Waicharoen, M. Chittaganpitch, A preliminary analysis of the epidemiology of influenza A(H1N1) virus infection in Thailand from early outbreak data, June-July 2009, Euresurveilance, 14 (2009), 1-3.
    [9] D. Roth, B. Henry, Social Distancing as a Pandemic Influenza Prevention Measure, National Collaborating Centre for Infectious Diseases, (2011).
    [10] F. Huang, S. S. Zhou, S. S. Zhang, H. J. Wang, L. H. Tang, Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet, Malaria J., 10 (2011), 54.
    [11] G. E. Box, G. M. Jenkins, G. C. Reinsel, Time series analysis: forecasting and control, Forth edition, John Wiley & Sons, 2015.
    [12] Health Commission of Hubei Province, available from: http://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/ (accessed on 8 February 2020).
    [13] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.
    [14] Chinese Center for Disease Control and Prevention. Report about 2019-nCoV, available from: http://www.chinacdc.cn/yyrdgz/202001/P020200128523354919292.pdf (accessed on 8 February 2020).
    [15] M. W. Shen, Z. H. Peng, Y. N. Xiao, L. Zhang, Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China, BioRxiv, (2020).
    [16] Wuhan Municipal Health Commission, available from: http://wjw.wuhan.gov.cn/front/web/showDetail/2020011109035 (accessed on 8 February 2020).
    [17] J. A. Backer, D. Klinkenberg, J. Wallinga, The incubation period of 2019-nCoV infections among travellers from Wuhan, China, MedRxiv, (2020).
    [18] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia, New Engl. J. Med., (2020).
    [19] S. Zhao, S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) vases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388.
    [20] J. Chan, S. Yuan, K. Kok, K. To, H. Chu, J. Yang, et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet, 395 (2020), 514-523.
    [21] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689-697.
    [22] Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklov, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel. Med., (2020), 1-4.
    [23] The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, Vital Surveillances: The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)-China, 2020, China CDC weekly, 2 (2020), 113-122.
    [24] Wuhan Municipal Health Commission, available from: http://wjw.wuhan.gov.cn/front/web/showDetail/2020012409132 (accessed on 4 March 2020).
  • This article has been cited by:

    1. Zhipeng Qiu, Michael Y. Li, Zhongwei Shen, Global dynamics of an infinite dimensional epidemic model with nonlocal state structures, 2018, 265, 00220396, 5262, 10.1016/j.jde.2018.06.036
    2. Samuel Bowong, Jean Jules Tewa, Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate, 2010, 15, 10075704, 3621, 10.1016/j.cnsns.2010.01.007
    3. Daihai He, David J.D. Earn, Epidemiological effects of seasonal oscillations in birth rates, 2007, 72, 00405809, 274, 10.1016/j.tpb.2007.04.004
    4. Md Abdul Kuddus, Emma S. McBryde, Adeshina I. Adekunle, Lisa J. White, Michael T. Meehan, Mathematical analysis of a two-strain disease model with amplification, 2021, 143, 09600779, 110594, 10.1016/j.chaos.2020.110594
    5. Divine Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, 2018, 11, 1793-5245, 1850085, 10.1142/S1793524518500857
    6. Hongbin Guo, Michael Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, 2008, 2, 1751-3758, 154, 10.1080/17513750802120877
    7. Yong Tian, Xuejun Ding, Rumor spreading model with considering debunking behavior in emergencies, 2019, 363, 00963003, 124599, 10.1016/j.amc.2019.124599
    8. A.M. Elaiw, Global properties of a class of HIV models, 2010, 11, 14681218, 2253, 10.1016/j.nonrwa.2009.07.001
    9. Junli Liu, Baoyang Peng, Tailei Zhang, Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence, 2015, 39, 08939659, 60, 10.1016/j.aml.2014.08.012
    10. Dessalegn Y. Melesse, Abba B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious stages, 2010, 366, 0022247X, 202, 10.1016/j.jmaa.2009.12.041
    11. Yu Yang, Liguang Xu, Stability of a fractional order SEIR model with general incidence, 2020, 105, 08939659, 106303, 10.1016/j.aml.2020.106303
    12. Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan, Fractional order SIR model with generalized incidence rate, 2020, 5, 2473-6988, 1856, 10.3934/math.2020124
    13. Abderrhaman Iggidr, Jean‐Claude Kamgang, Gauthier Sallet, Jean‐Jules Tewa, Global Analysis of New Malaria Intrahost Models with a Competitive Exclusion Principle, 2006, 67, 0036-1399, 260, 10.1137/050643271
    14. R. N. Mohapatra, Donald Porchia, Zhisheng Shuai, 2015, Chapter 51, 978-81-322-2484-6, 619, 10.1007/978-81-322-2485-3_51
    15. Zuzana Chladná, Jana Kopfová, Dmitrii Rachinskii, Samiha C. Rouf, Global dynamics of SIR model with switched transmission rate, 2020, 80, 0303-6812, 1209, 10.1007/s00285-019-01460-2
    16. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    17. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    18. Paul Georgescu, Ying-Hen Hsieh, Global Dynamics of a Predator-Prey Model with Stage Structure for the Predator, 2007, 67, 0036-1399, 1379, 10.1137/060670377
    19. Xinzhi Liu, Peter Stechlinski, Infectious disease models with time-varying parameters and general nonlinear incidence rate, 2012, 36, 0307904X, 1974, 10.1016/j.apm.2011.08.019
    20. Modeling the effects of carriers on transmission dynamics of infectious diseases, 2011, 8, 1551-0018, 711, 10.3934/mbe.2011.8.711
    21. Sarbaz H. A. Khoshnaw, Najem A. Mohammad, Rizgar H. Salih, Identifying Critical Parameters in SIR Model for Spread of Disease, 2017, 05, 2327-4018, 32, 10.4236/ojmsi.2017.51003
    22. Andrei Korobeinikov, Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission, 2006, 68, 0092-8240, 615, 10.1007/s11538-005-9037-9
    23. Juping Zhang, Zhen Jin, Yuming Chen, Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations, 2013, 242, 00255564, 143, 10.1016/j.mbs.2013.01.005
    24. A. Mhlanga, C. P. Bhunu, S. Mushayabasa, HSV-2 and Substance Abuse amongst Adolescents: Insights through Mathematical Modelling, 2014, 2014, 1110-757X, 1, 10.1155/2014/104819
    25. Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389
    26. E.H. Elbasha, C.N. Podder, A.B. Gumel, Analyzing the dynamics of an SIRS vaccination model with waning natural and vaccine-induced immunity, 2011, 12, 14681218, 2692, 10.1016/j.nonrwa.2011.03.015
    27. C. P. BHUNU, MODELING THE SPREAD OF STREET KIDS IN ZIMBABWE, 2014, 22, 0218-3390, 429, 10.1142/S0218339014500168
    28. Bradley G. Wagner, David J.D. Earn, Population dynamics of live-attenuated virus vaccines, 2010, 77, 00405809, 79, 10.1016/j.tpb.2009.08.003
    29. Liang Zhang, Zhi-Cheng Wang, Threshold dynamics of a reaction-diffusion epidemic model with stage structure, 2017, 22, 1553-524X, 3797, 10.3934/dcdsb.2017191
    30. Gang Huang, Yasuhiro Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, 2011, 63, 0303-6812, 125, 10.1007/s00285-010-0368-2
    31. S. Mushayabasa, C.P. Bhunu, C. Webb, M. Dhlamini, A mathematical model for assessing the impact of poverty on yaws eradication, 2012, 36, 0307904X, 1653, 10.1016/j.apm.2011.09.022
    32. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 3, 978-3-319-53206-6, 43, 10.1007/978-3-319-53208-0_3
    33. C. P. Bhunu, A. N. Mhlanga, S. Mushayabasa, Exploring the Impact of Prostitution on HIV/AIDS Transmission, 2014, 2014, 2356-7872, 1, 10.1155/2014/651025
    34. S.M. Ashrafur Rahman, Xingfu Zou, Modelling the impact of vaccination on infectious diseases dynamics, 2015, 9, 1751-3758, 307, 10.1080/17513758.2014.986545
    35. Yuji Li, Rui Xu, Jiazhe Lin, The stability analysis of an epidemic model with saturating incidence and age-structure in the exposed and infectious classes, 2018, 2018, 1687-1847, 10.1186/s13662-018-1635-6
    36. Andrei Korobeinikov, Global Properties of SIR and SEIR Epidemic Models with Multiple Parallel Infectious Stages, 2009, 71, 0092-8240, 75, 10.1007/s11538-008-9352-z
    37. A. Elazzouzi, A. Lamrani Alaoui, M. Tilioua, A. Tridane, Global stability analysis for a generalized delayed SIR model with vaccination and treatment, 2019, 2019, 1687-1847, 10.1186/s13662-019-2447-z
    38. Elvira Barbera, Giancarlo Consolo, Giovanna Valenti, Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model, 2013, 88, 1539-3755, 10.1103/PhysRevE.88.052719
    39. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    40. Pablo G. Barrientos, J. Ángel Rodríguez, Alfonso Ruiz-Herrera, Chaotic dynamics in the seasonally forced SIR epidemic model, 2017, 75, 0303-6812, 1655, 10.1007/s00285-017-1130-9
    41. Samuel Bowong, Jurgen Kurths, Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality, 2012, 67, 0924-090X, 2027, 10.1007/s11071-011-0127-y
    42. Yu Yang, Cuimei Zhang, Xunyan Jiang, Global stability of an SEIQV epidemic model with general incidence rate, 2015, 08, 1793-5245, 1550020, 10.1142/S1793524515500205
    43. Zhisheng Shuai, P. van den Driessche, Global Stability of Infectious Disease Models Using Lyapunov Functions, 2013, 73, 0036-1399, 1513, 10.1137/120876642
    44. Yijun Lou, Jianhong Wu, Tick seeking assumptions and their implications for Lyme disease predictions, 2014, 17, 1476945X, 99, 10.1016/j.ecocom.2013.11.003
    45. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, 2012, 9, 1551-0018, 685, 10.3934/mbe.2012.9.685
    46. Swarnali Sharma, G. P. Samanta, A ratio-dependent predator-prey model with Allee effect and disease in prey, 2015, 47, 1598-5865, 345, 10.1007/s12190-014-0779-0
    47. Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, 2016, 291, 00963003, 149, 10.1016/j.amc.2016.06.032
    48. David J. D. Earn, 2008, Chapter 1, 978-3-540-78910-9, 3, 10.1007/978-3-540-78911-6_1
    49. JEAN M. TCHUENCHE, CHRISTINAH CHIYAKA, STABILITY ANALYSIS OF A TRITROPHIC FOOD CHAIN MODEL WITH AN ADAPTIVE PARAMETER FOR THE PREDATOR, 2008, 22, 08908575, 237, 10.1111/j.1939-7445.2008.00035.x
    50. Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, 2014, 68, 08981221, 288, 10.1016/j.camwa.2014.06.002
    51. Luju Liu, Yicang Zhou, Jianhong Wu, Global Dynamics in a TB Model Incorporating Case Detection And Two Treatment Stages, 2008, 38, 0035-7596, 10.1216/RMJ-2008-38-5-1541
    52. S. M. Ashrafur Rahman, Xingfu Zou, Flu epidemics: a two-strain flu model with a single vaccination, 2011, 5, 1751-3758, 376, 10.1080/17513758.2010.510213
    53. Gilberto C. González-Parra, Diego F. Aranda, Benito Chen-Charpentier, Miguel Díaz-Rodríguez, Jaime E. Castellanos, Mathematical Modeling and Characterization of the Spread of Chikungunya in Colombia, 2019, 24, 2297-8747, 6, 10.3390/mca24010006
    54. S M O'Regan, Impact of seasonality upon the dynamics of a novel pathogen in a seabird colony, 2008, 138, 1742-6596, 012017, 10.1088/1742-6596/138/1/012017
    55. Hongquan Sun, Jin Li, A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2020, 545, 03784371, 123477, 10.1016/j.physa.2019.123477
    56. Dan Li, Wanbiao Ma, Zhichao Jiang, An Epidemic Model for Tick-Borne Disease with Two Delays, 2013, 2013, 1110-757X, 1, 10.1155/2013/427621
    57. Gang Huang, Yueping Dong, A note on global properties for a stage structured predator–prey model with mutual interference, 2018, 2018, 1687-1847, 10.1186/s13662-018-1767-8
    58. Nicholas Kwasi-Do Ohene Opoku, Cecilia Afriyie, The Role of Control Measures and the Environment in the Transmission Dynamics of Cholera, 2020, 2020, 1085-3375, 1, 10.1155/2020/2485979
    59. Impact of heterogeneity on the dynamics of an SEIR epidemic model, 2012, 9, 1551-0018, 393, 10.3934/mbe.2012.9.393
    60. Swarnali Sharma, G. P. Samanta, Stability analysis and optimal control of an epidemic model with vaccination, 2015, 08, 1793-5245, 1550030, 10.1142/S1793524515500308
    61. Samuel Bowong, Jean Jules Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, 2009, 14, 10075704, 4010, 10.1016/j.cnsns.2009.02.017
    62. Yijun Lou, Xiao-Qiang Zhao, Modelling Malaria Control by Introduction of Larvivorous Fish, 2011, 73, 0092-8240, 2384, 10.1007/s11538-011-9628-6
    63. Ellina V. Grigorieva, Evgenii N. Khailov, Andrei Korobeinikov, Optimal Controls of the Highly Active Antiretroviral Therapy, 2020, 2020, 1085-3375, 1, 10.1155/2020/8107106
    64. Hai-Feng Huo, Shuai-Jun Dang, Yu-Ning Li, Stability of a Two-Strain Tuberculosis Model with General Contact Rate, 2010, 2010, 1085-3375, 1, 10.1155/2010/293747
    65. Gang Huang, Anping Liu, A note on global stability for a heroin epidemic model with distributed delay, 2013, 26, 08939659, 687, 10.1016/j.aml.2013.01.010
    66. Jinliang Wang, Xianning Liu, Modeling diseases with latency and nonlinear incidence rates: global dynamics of a multi-group model, 2016, 39, 01704214, 1964, 10.1002/mma.3613
    67. Yanan Zhao, Xiaoying Zhang, Donal O'Regan, THRESHOLD DYNAMICS IN A STOCHASTIC SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE, 2019, 9, 2156-907X, 2096, 10.11948/20180041
    68. Zhisheng Shuai, Joseph H. Tien, P. van den Driessche, Cholera Models with Hyperinfectivity and Temporary Immunity, 2012, 74, 0092-8240, 2423, 10.1007/s11538-012-9759-4
    69. Xiaoming Fan, Zhigang Wang, Xuelian Xu, Global Stability of Two-Group Epidemic Models with Distributed Delays and Random Perturbation, 2012, 2012, 1085-3375, 1, 10.1155/2012/132095
    70. Elamin H. Elbasha, Global Stability of Equilibria in a Two-Sex HPV Vaccination Model, 2008, 70, 0092-8240, 10.1007/s11538-007-9283-0
    71. Xiaomei Ren, Tiansi Zhang, Global Analysis of an SEIR Epidemic Model with a Ratio-Dependent Nonlinear Incidence Rate, 2017, 05, 2327-4352, 2311, 10.4236/jamp.2017.512188
    72. Wang Shaoli, Feng Xinlong, He Yinnian, Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence, 2011, 31, 02529602, 1959, 10.1016/S0252-9602(11)60374-3
    73. Hongquan Sun, Jinliang Wang, Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay, 2019, 77, 08981221, 284, 10.1016/j.camwa.2018.09.032
    74. Michael Y. Li, 2019, Chapter 3, 978-3-030-22582-7, 63, 10.1007/978-3-030-22583-4_3
    75. Andrei Korobeinikov, Global Properties of Infectious Disease Models with Nonlinear Incidence, 2007, 69, 0092-8240, 1871, 10.1007/s11538-007-9196-y
    76. Ram Singh, Madhu Jain, Shoket Ali, 2016, Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment, 978-1-4673-9939-5, 2990, 10.1109/ICEEOT.2016.7755248
    77. Haitao Song, Weihua Jiang, Shengqiang Liu, Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays, 2016, 09, 1793-5245, 1650046, 10.1142/S1793524516500467
    78. C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche, A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis, 2011, 73, 0092-8240, 1333, 10.1007/s11538-010-9568-6
    79. Global stability for epidemic model with constant latency and infectious periods, 2012, 9, 1551-0018, 297, 10.3934/mbe.2012.9.297
    80. Muhammad Altaf Khan, Qaisar Badshah, Saeed Islam, Ilyas Khan, Sharidan Shafie, Sher Afzal Khan, Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination, 2015, 2015, 1687-1847, 10.1186/s13662-015-0429-3
    81. C.Y. Chen, J.P. Ward, W.B. Xie, Modelling the outbreak of infectious disease following mutation from a non-transmissible strain, 2019, 126, 00405809, 1, 10.1016/j.tpb.2018.08.002
    82. Hongbin Guo, Michael Y. Li, Global dynamics of a staged-progression model for HIV/AIDS with amelioration, 2011, 12, 14681218, 2529, 10.1016/j.nonrwa.2011.02.021
    83. Sveir epidemiological model with varying infectivity and distributed delays, 2011, 8, 1551-0018, 875, 10.3934/mbe.2011.8.875
    84. Jonathan Horrocks, Chris T. Bauch, Algorithmic discovery of dynamic models from infectious disease data, 2020, 10, 2045-2322, 10.1038/s41598-020-63877-w
    85. Aadil Lahrouz, Lahcen Omari, Driss Kiouach, Aziza Belmaâti, Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, 2012, 218, 00963003, 6519, 10.1016/j.amc.2011.12.024
    86. v b, Test high volume of citations, 2012, 4, 0037-7333, 28, 10.5555/20120925-a1
    87. Lei Wang, Zhidong Teng, Long Zhang, Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/249623
    88. Jean M. Tchuenche, Chris T. Bauch, Dynamics of an Infectious Disease Where Media Coverage Influences Transmission, 2012, 2012, 2090-7702, 1, 10.5402/2012/581274
    89. Zhisheng Shuai, P. van den Driessche, Global dynamics of cholera models with differential infectivity, 2011, 234, 00255564, 118, 10.1016/j.mbs.2011.09.003
    90. N.H. AlShamrani, A.M. Elaiw, H. Batarfi, A.D. Hobiny, H. Dutta, Global stability analysis of a general nonlinear scabies dynamics model, 2020, 138, 09600779, 110133, 10.1016/j.chaos.2020.110133
    91. Abderrazak Nabti, Behzad Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, 2021, 0170-4214, 10.1002/mma.7285
    92. Guanghua Chen, Huizhang Shen, Guangming Chen, Teng Ye, Xiangbin Tang, Naphtali Kerr, A new kinetic model to discuss the control of panic spreading in emergency, 2015, 417, 03784371, 345, 10.1016/j.physa.2014.09.055
    93. Swarnali Sharma, G.P. Samanta, A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge, 2015, 70, 09600779, 69, 10.1016/j.chaos.2014.11.010
    94. Z. Mukandavire, W. Garira, J.M. Tchuenche, Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics, 2009, 33, 0307904X, 2084, 10.1016/j.apm.2008.05.017
    95. D. Okuonghae, Lyapunov functions and global properties of some tuberculosis models, 2015, 48, 1598-5865, 421, 10.1007/s12190-014-0811-4
    96. Maia Martcheva, 2015, Chapter 7, 978-1-4899-7611-6, 149, 10.1007/978-1-4899-7612-3_7
    97. Joaquim P. Mateus, César M. Silva, Existence of periodic solutions of a periodic SEIRS model with general incidence, 2017, 34, 14681218, 379, 10.1016/j.nonrwa.2016.09.013
    98. Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723
    99. S M O'Regan, T C Kelly, A Korobeinikov, M J A O'Callaghan, A V Pokrovskii, Qualitative and numerical investigations of the impact of a novel pathogen on a seabird colony, 2008, 138, 1742-6596, 012018, 10.1088/1742-6596/138/1/012018
    100. K. Nudee, S. Chinviriyasit, W. Chinviriyasit, The effect of backward bifurcation in controlling measles transmission by vaccination, 2019, 123, 09600779, 400, 10.1016/j.chaos.2019.04.026
    101. Ling Zhang, Jingmei Pang, Jinliang Wang, Stability Analysis of a Multigroup Epidemic Model with General Exposed Distribution and Nonlinear Incidence Rates, 2013, 2013, 1085-3375, 1, 10.1155/2013/354287
    102. Suzanne M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov, Michael J.A. O’Callaghan, Alexei V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models, 2010, 23, 08939659, 446, 10.1016/j.aml.2009.11.014
    103. Shu Liao, Jin Wang, Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices, 2012, 45, 09600779, 966, 10.1016/j.chaos.2012.03.009
    104. Jean Claude Kamgang, Christopher Penniman Thron, Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model, 2019, 81, 0092-8240, 4366, 10.1007/s11538-019-00637-6
    105. Ricardo Almeida, Artur M. C. Brito da Cruz, Natália Martins, M. Teresa T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, 2019, 7, 2195-268X, 776, 10.1007/s40435-018-0492-1
    106. GLOBAL DYNAMICS OF A REACTION AND DIFFUSION MODEL FOR AN HTLV-I INFECTION WITH MITOTIC DIVISION OF ACTIVELY INFECTED CELLS, 2017, 7, 2156-907X, 899, 10.11948/2017057
    107. Piu Samui, Jayanta Mondal, Subhas Khajanchi, A mathematical model for COVID-19 transmission dynamics with a case study of India, 2020, 140, 09600779, 110173, 10.1016/j.chaos.2020.110173
    108. C. P. Bhunu, W. Garira, G. Magombedze, Mathematical Analysis of a Two Strain HIV/AIDS Model with Antiretroviral Treatment, 2009, 57, 0001-5342, 361, 10.1007/s10441-009-9080-2
    109. Shuyu Han, Chengxia Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, 2019, 98, 08939659, 114, 10.1016/j.aml.2019.05.045
    110. Aberrahman Iggidr, Gauthier Sallet, Max O. Souza, On the dynamics of a class of multi-group models for vector-borne diseases, 2016, 441, 0022247X, 723, 10.1016/j.jmaa.2016.04.003
    111. C. Connell McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, 2008, 338, 0022247X, 518, 10.1016/j.jmaa.2007.05.012
    112. Cong Jin, Xiao-Yan Wang, Analysis and control stratagems of flash disk virus dynamic propagation model, 2012, 5, 19390114, 226, 10.1002/sec.310
    113. Hongbin Guo, Michael Yi Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, 2012, 17, 1553-524X, 2413, 10.3934/dcdsb.2012.17.2413
    114. C. Connell McCluskey, Global stability for an SEI model of infectious disease with age structure and immigration of infecteds, 2016, 13, 1551-0018, 381, 10.3934/mbe.2015008
    115. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    116. Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi, Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective, 2014, 05, 2152-7385, 3156, 10.4236/am.2014.519298
    117. Xinzhi Liu, Peter Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections, 2013, 14, 14681218, 264, 10.1016/j.nonrwa.2012.06.003
    118. B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet, Stability of differential susceptibility and infectivity epidemic models, 2011, 62, 0303-6812, 39, 10.1007/s00285-010-0327-y
    119. Muhammad Altaf Khan, Yasir Khan, Taj Wali Khan, Saeed Islam, Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology, 2017, 10, 1793-5245, 1750096, 10.1142/S1793524517500966
    120. Paul Georgescu, Ying‐Hen Hsieh, Global Stability for a Virus Dynamics Model with Nonlinear Incidence of Infection and Removal, 2007, 67, 0036-1399, 337, 10.1137/060654876
    121. N Anggriani, A K Supriatna, E Soewono, The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model, 2015, 622, 1742-6588, 012039, 10.1088/1742-6596/622/1/012039
    122. Mohamed El Fatini, Aziz Laaribi, Roger Pettersson, Regragui Taki, Lévy noise perturbation for an epidemic model with impact of media coverage, 2019, 91, 1744-2508, 998, 10.1080/17442508.2019.1595622
    123. Soufiane Bentout, Abdennasser Chekroun, Toshikazu Kuniya, Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria, 2020, 7, 2327-8994, 306, 10.3934/publichealth.2020026
    124. Dan Li, Wanbiao Ma, Dynamical Analysis of a Stage-Structured Model for Lyme Disease with Two Delays, 2016, 59, 0008-4395, 363, 10.4153/CMB-2015-063-x
    125. C.P. Bhunu, S. Mushayabasa, R.J. Smith, Assessing the effects of poverty in tuberculosis transmission dynamics, 2011, 0307904X, 10.1016/j.apm.2011.11.046
    126. Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan, Fractional order SEIR model with generalized incidence rate, 2020, 5, 2473-6988, 2843, 10.3934/math.2020182
    127. Jean Jules Tewa, Jean Luc Dimi, Samuel Bowong, Lyapunov functions for a dengue disease transmission model, 2009, 39, 09600779, 936, 10.1016/j.chaos.2007.01.069
    128. Tzy-Wei Hwang, Feng-Bin Wang, Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation, 2013, 18, 1553-524X, 147, 10.3934/dcdsb.2013.18.147
    129. GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE, 2016, 6, 2156-907X, 47, 10.11948/2016005
    130. Ying Yang, Yanan Zhao, Daqing Jiang, The dynamics of the stochastic multi-molecule biochemical reaction model, 2014, 52, 0259-9791, 1477, 10.1007/s10910-014-0324-2
    131. Ram P. Sigdel, C. Connell McCluskey, Global stability for an SEI model of infectious disease with immigration, 2014, 243, 00963003, 684, 10.1016/j.amc.2014.06.020
    132. Shangbing Ai, Jia Li, Junliang Lu, Mosquito-Stage-Structured Malaria Models and Their Global Dynamics, 2012, 72, 0036-1399, 1213, 10.1137/110860318
    133. Ram Singh, Madhu Jain, Shoket Ali, 2016, Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment, 978-1-4673-9939-5, 3995, 10.1109/ICEEOT.2016.7755464
    134. Da-peng Gao, Nan-jing Huang, Threshold dynamics of an SEIR epidemic model with a nonlinear incidence rate and a discontinuous treatment function, 2020, 114, 1578-7303, 10.1007/s13398-019-00751-z
    135. Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli, Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis, 2012, 36, 0307904X, 2466, 10.1016/j.apm.2011.09.004
    136. Xia Wang, Youde Tao, Xinyu Song, Global stability of a virus dynamics model with Beddington–DeAngelis incidence rate and CTL immune response, 2011, 66, 0924-090X, 825, 10.1007/s11071-011-9954-0
    137. J. Demongeot, O. Hansen, H. Hessami, A. S. Jannot, J. Mintsa, M. Rachdi, C. Taramasco, Random Modelling of Contagious Diseases, 2013, 61, 0001-5342, 141, 10.1007/s10441-013-9176-6
    138. Huawen Ye, Weihua Gui, Honglei Xu, Global convergence analysis of a class of epidemic models, 2017, 47, 0307904X, 442, 10.1016/j.apm.2017.03.013
    139. Tanuja Das, Prashant K. Srivastava, Anuj Kumar, Nonlinear dynamical behavior of an SEIR mathematical model: Effect of information and saturated treatment, 2021, 31, 1054-1500, 043104, 10.1063/5.0039048
    140. Shubhankar Saha, Priti Kumar Roy, A Comparative Study Between Two Systems with and Without Awareness in Controlling HIV/AIDS, 2017, 27, 2083-8492, 337, 10.1515/amcs-2017-0024
    141. Antonín Slavík, Reaction–diffusion equations on graphs: stationary states and Lyapunov functions, 2021, 34, 0951-7715, 1854, 10.1088/1361-6544/abd52c
    142. Anupam Khatua, Debprasad Pal, Tapan Kumar Kar, Global Dynamics of a Diffusive Two-Strain Epidemic Model with Non-Monotone Incidence Rate, 2022, 46, 1028-6276, 859, 10.1007/s40995-022-01287-5
    143. Md Abdul Kuddus, Azizur Rahman, Analysis of COVID-19 using a modified SLIR model with nonlinear incidence, 2021, 27, 22113797, 104478, 10.1016/j.rinp.2021.104478
    144. Ardak Kashkynbayev, Daiana Koptleuova, Global dynamics of tick-borne diseases, 2020, 17, 1551-0018, 4064, 10.3934/mbe.2020225
    145. Tianyu Cheng, Xingfu Zou, A new perspective on infection forces with demonstration by a DDE infectious disease model, 2022, 19, 1551-0018, 4856, 10.3934/mbe.2022227
    146. Jana Kopfová, Petra Nábělková, Dmitrii Rachinskii, Samiha C. Rouf, Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator, 2021, 83, 0303-6812, 10.1007/s00285-021-01629-8
    147. Abderrahman Iggidr, Max O. Souza, On the limits of the Volterra function in the Lyapunov method: The Anderson-May-Gupta model as a cautionary example, 2023, 517, 0022247X, 126465, 10.1016/j.jmaa.2022.126465
    148. Attiq ul Rehman, Ram Singh, Praveen Agarwal, On Fractional Lyapunov Functions of Nonlinear Dynamic Systems and Mittag-Leffler Stability Thereof, 2022, 2, 2673-9321, 209, 10.3390/foundations2010013
    149. Kuldeep Chaudhary, Pradeep Kumar, Sudipa Chauhan, Vijay Kumar, Optimal promotional policy of an innovation diffusion model incorporating the brand image in a segment-specific market, 2022, 9, 2327-0012, 120, 10.1080/23270012.2021.1978883
    150. Hongquan Sun, Hong Li, Jin Li, Zhangsheng Zhu, Dynamics of an SIRS model with age structure and two delays, 2021, 14, 1793-5245, 10.1142/S179352452150056X
    151. A. Lamrani Alaoui, M. Tilioua, M. R. Sidi Ammi, P. Agarwal, 2021, Chapter 2, 978-981-16-2449-0, 17, 10.1007/978-981-16-2450-6_2
    152. Alfonso Ruiz-Herrera, Stable and unstable endemic solutions in the seasonally forced SIR epidemic model, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023046
    153. S. Bowong, A. Temgoua, Y. Malong, J. Mbang, Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages, 2020, 21, 2191-0294, 259, 10.1515/ijnsns-2017-0244
    154. Ion Bica, Zhichun Zhai, Rui Hu, A modified Susceptible-Infected-Recovered epidemiological model, 2022, 49, 12236934, 291, 10.52846/ami.v49i2.1560
    155. Jagan Mohan Jonnalagadda, Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination, 2022, 9, 2353-0626, 1, 10.1515/msds-2020-0143
    156. Weixin Wu, Zhidong Teng, Periodic wave propagation in a diffusive SIR epidemic model with nonlinear incidence and periodic environment, 2022, 63, 0022-2488, 122701, 10.1063/5.0109312
    157. Abdesslem Lamrani Alaoui, Moulay Rchid Sidi Ammi, Mouhcine Tilioua, Delfim F.M. Torres, 2022, 9780323905046, 191, 10.1016/B978-0-32-390504-6.00016-4
    158. Ardak Kashkynbayev, Fathalla A. Rihan, Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay, 2021, 9, 2227-7390, 1829, 10.3390/math9151829
    159. Santosh Ansumali, Shaurya Kaushal, Aloke Kumar, Meher K. Prakash, M. Vidyasagar, Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2, 2020, 50, 13675788, 432, 10.1016/j.arcontrol.2020.10.003
    160. Linhe Zhu, Xuewei Wang, Zhengdi Zhang, Chengxia Lei, Spatial dynamics and optimization method for a rumor propagation model in both homogeneous and heterogeneous environment, 2021, 105, 0924-090X, 3791, 10.1007/s11071-021-06782-9
    161. Walid Ben Aribi, Bechir Naffeti, Kaouther Ayouni, Hamadi Ammar, Henda Triki, Slimane Ben Miled, Amira Kebir, Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia, 2022, 8, 2349-5103, 10.1007/s40819-022-01326-0
    162. Ke Qi, Zhijun Liu, Lianwen Wang, Yuming Chen, Global dynamics of a diffusive SEICR HCV model with nonlinear incidences, 2023, 206, 03784754, 181, 10.1016/j.matcom.2022.11.017
    163. Yu Gu, Mohabat Khan, Rahat Zarin, Amir Khan, Abdullahi Yusuf, Usa Wannasingha Humphries, Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach, 2023, 67, 11100168, 1, 10.1016/j.aej.2022.10.057
    164. Santosh Ansumali, Shaurya Kaushal, Aloke Kumar, Meher K. Prakash, M. Vidyasagar, Modelling the COVID-19 Pandemic: Asymptomatic Patients, Lockdown and Herd Immunity, 2020, 53, 24058963, 823, 10.1016/j.ifacol.2021.04.223
    165. Guodong Liu, Xiaoyan Zhang, Asymptotic dynamics of a logistic SIS epidemic reaction-diffusion model with nonlinear incidence rate, 2023, 520, 0022247X, 126866, 10.1016/j.jmaa.2022.126866
    166. Divine Wanduku, ESTIMATING WHITE NOISE INTENSITY REGIONS FOR COMPARABLE PROPERTIES OF A CLASS OF SEIRS STOCHASTIC AND DETERMINISTIC EPIDEMIC MODELS, 2021, 11, 2156-907X, 1095, 10.11948/20190372
    167. Modeste N'zi, Gérard Kanga, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model with saturated incidence rate, 2016, 24, 0926-6364, 65, 10.1515/rose-2016-0005
    168. Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4
    169. Liancheng WANG, Xiaoqin WU, Stability and Hopf Bifurcation for an SEIR Epidemic Model with Delay, 2018, 2, 2587-2648, 113, 10.31197/atnaa.380970
    170. Svetozar Margenov, Nedyu Popivanov, Iva Ugrinova, Tsvetan Hristov, Differential and Time-Discrete SEIRS Models with Vaccination: Local Stability, Validation and Sensitivity Analysis Using Bulgarian COVID-19 Data, 2023, 11, 2227-7390, 2238, 10.3390/math11102238
    171. Florian Nill, Endemic oscillations for SARS-CoV-2 Omicron—A SIRS model analysis, 2023, 173, 09600779, 113678, 10.1016/j.chaos.2023.113678
    172. Zviiteyi Chazuka, Edinah Mudimu, Dephney Mathebula, Stability and bifurcation analysis of an HIV model with pre-exposure prophylaxis and treatment interventions, 2024, 23, 24682276, e01979, 10.1016/j.sciaf.2023.e01979
    173. Daudel Tchatat, Gabriel Guilsou Kolaye, Amadou Alioum, Samuel Bowong, Céline Maïrousgou, Mathematical modelling of the impact of poverty on cholera outbreaks, 2023, 0170-4214, 10.1002/mma.9727
    174. Patrick Noah Okolo, Christiana Gideon Makama, Roseline Toyin Abah, A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT, 2023, 7, 2616-1370, 103, 10.33003/fjs-2023-0706-2108
    175. Moreen Brenda Gatwiri, Marilyn Ronoh, Cyrus Gitonga Ngari, Dominic Makaa Kitavi, Firdous A. Shah, Mathematical Modelling of Host-Pest Interaction in the Presence of Insecticides and Resistance: A Case of Fall Armyworm, 2024, 2024, 2314-4785, 1, 10.1155/2024/2886786
    176. Summer Atkins, Michael Malisoff, Robustness of feedback control for SIQR epidemic model under measurement uncertainty, 2023, 0, 2156-8472, 0, 10.3934/mcrf.2023043
    177. Huicong Li, Tian Xiang, On an SIS epidemic model with power‐like nonlinear incidence and with/without cross‐diffusion, 2024, 0022-2526, 10.1111/sapm.12683
    178. J. A. Akingbade, R. A. Adetona, B. S Ogundare, Mathematical model for the study of transmission and control of measles with immunity at initial stage, 2018, 6, 23193786, 823, 10.26637/MJM0604/0019
    179. Jinlong Lv, Wanbiao Ma, Delay induced stability switch in a mathematical model of CD8 T-cell response to SARS-CoV-2 mediated by receptor ACE2, 2024, 34, 1054-1500, 10.1063/5.0187872
    180. Saida Id Ouaziz, Mohammed El Khomssi, Mathematical approaches to controlling COVID-19: optimal control and financial benefits, 2024, 4, 2791-8564, 1, 10.53391/mmnsa.1373093
    181. Mohammed Azoua, Marouane Karim, Abderrahim Azouani, Imad Hafidi, Improved parameter estimation in epidemic modeling using continuous data assimilation methods, 2024, 1598-5865, 10.1007/s12190-024-02145-w
    182. Shan Yang, Shihan Liu, Kaijun Su, Jianhong Chen, A Rumor Propagation Model Considering Media Effect and Suspicion Mechanism under Public Emergencies, 2024, 12, 2227-7390, 1906, 10.3390/math12121906
    183. Rattiya Sungchasit, I.-Ming Tang, Puntani Pongsumpun, Sensitivity analysis and global stability of epidemic between Thais and tourists for Covid -19, 2024, 14, 2045-2322, 10.1038/s41598-024-71009-x
    184. Sacrifice Nana-Kyere, Baba Seidu, Kwara Nantomah, Optimal control and cost-effectiveness analysis of nonlinear deterministic Zika virus model, 2024, 2363-6203, 10.1007/s40808-024-02130-z
    185. Suvankar Majee, Soovoojeet Jana, T. K. Kar, Bidhan Bhunia, Complex dynamics of a fractional-order delayed epidemic model incorporating waning immunity and optimal control, 2024, 1951-6355, 10.1140/epjs/s11734-024-01221-3
    186. Xiaoqing Mu, Stability analysis of a conventional SEIR epidemic model with relapse and general nonlinear incidence, 2024, 2905, 1742-6588, 012036, 10.1088/1742-6596/2905/1/012036
    187. Dilfuza Eshmamatova, Axror Bozorov, 2024, 3244, 0094-243X, 020034, 10.1063/5.0241483
    188. Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343
    189. Bechir Naffeti, Zeineb Ounissi, Akhil Kumar Srivastav, Nico Stollenwerk, Joseba Bidaurrazaga Van-Dierdonck, Maíra Aguiar, Modeling COVID-19 dynamics in the Basque Country: characterizing population immunity profile from 2020 to 2022, 2025, 25, 1471-2334, 10.1186/s12879-024-10342-y
    190. Sumana Ghosh, Jayanta Mondal, Subhas Khajanchi, Effect of media awareness in the spread of infectious diseases, 2025, 1598-5865, 10.1007/s12190-025-02387-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13015) PDF downloads(2415) Cited by(137)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog