A note on global stability for malaria infections model with latencies

  • Received: 01 June 2013 Accepted: 29 June 2018 Published: 01 March 2014
  • MSC : Primary: 92D25, 92D30; Secondary: 37G99.

  • A recent paper [Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2) 2013, 463-481.] presented a mathematical model to investigate the spread of malaria. The model is obtained by modifying the classic Ross-Macdonald model by incorporating latencies both for human beings and female mosquitoes. It is realistic to consider the new model with latencies differing from individuals to individuals. However, the analysis in that paper did not resolve the global malaria disease dynamics when $\Re_0>1$. The authors just showed global stability of endemic equilibrium for two specific probability functions: exponential functions and step functions. Here, we show that if there is no recovery, the endemic equilibrium is globally stable for $\Re_0>1$ without other additional conditions. The approach used here, is to use a direct Lyapunov functional and Lyapunov-LaSalle invariance principle.

    Citation: Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995

    Related Papers:

    [1] Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999
    [2] Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361
    [3] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [4] Yanyu Xiao, Xingfu Zou . On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences and Engineering, 2013, 10(2): 463-481. doi: 10.3934/mbe.2013.10.463
    [5] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [6] Cruz Vargas-De-León . Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Mathematical Biosciences and Engineering, 2012, 9(1): 165-174. doi: 10.3934/mbe.2012.9.165
    [7] Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246
    [8] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [9] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [10] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
  • A recent paper [Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2) 2013, 463-481.] presented a mathematical model to investigate the spread of malaria. The model is obtained by modifying the classic Ross-Macdonald model by incorporating latencies both for human beings and female mosquitoes. It is realistic to consider the new model with latencies differing from individuals to individuals. However, the analysis in that paper did not resolve the global malaria disease dynamics when $\Re_0>1$. The authors just showed global stability of endemic equilibrium for two specific probability functions: exponential functions and step functions. Here, we show that if there is no recovery, the endemic equilibrium is globally stable for $\Re_0>1$ without other additional conditions. The approach used here, is to use a direct Lyapunov functional and Lyapunov-LaSalle invariance principle.


    [1] Funkcial. Ekvac., 31 (1988), 331-347.
    [2] in Mathematical Population Dynamics: Analysis of Heterogeneity, I. Theory of Epidemics (eds. O. Arino et al.), Wuerz, Winnepeg, Canada, (1995), 33-50.
    [3] Applied Mathematical Science, New York, 1993.
    [4] Funkcial. Ekvac., 21 (1978), 11-41.
    [5] Comm. Pure Appl. Math., 38 (1985), 733-753.
    [6] J. Math. Biol., 63 (2011), 125-139.
    [7] SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [8] Math. Biosci. Eng., 1 (2004), 57-60.
    [9] Bull. Math. Biol., 68 (2006), 615-626.
    [10] Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976.
    [11] W. A. Benjamin Inc., New York, 1971.
    [12] Nonlinear Anal. RWA., 11 (2010), 55-59.
    [13] Math. Biosci. Eng., 6 (2009), 603-610.
    [14] Princeton University Press, Princeton, NJ, 2003.
    [15] Math. Med. Biol., 29 (2012), 283-300.
    [16] Math. Biosci. Eng., 4 (2007), 205-219.
    [17] Math. Biosci. Eng., 10 (2013), 463-481.
  • This article has been cited by:

    1. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    2. Jinliang Wang, Xinxin Tian, Xia Wang, Stability analysis for delayed viral infection model with multitarget cells and general incidence rate, 2016, 09, 1793-5245, 1650007, 10.1142/S1793524516500078
    3. Shaimaa Abdelhamed Azoz, Fatima Hussien, 2022, Chapter 24, 978-3-030-79605-1, 379, 10.1007/978-3-030-79606-8_24
    4. B. S. Alofi, S. A. Azoz, Stability of general pathogen dynamic models with two types of infectious transmission with immune impairment, 2021, 6, 2473-6988, 114, 10.3934/math.2021009
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2812) PDF downloads(622) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog