Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes

  • Received: 01 March 2011 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : Primary: 34K20, 92D30.

  • A delayed vector-bias model for malaria transmission with incubation period in mosquitoes is studied. The delay $\tau$ corresponds to the time necessary for a latently infected vector to become an infectious vector. We prove that the global stability is completely determined by the threshold parameter, $R_0(\tau)$. If $R_0(\tau)\leq1$, the disease-free equilibrium is globally asymptotically stable. If $R_0(\tau)>1$ a unique endemic equilibrium exists and is globally asymptotically stable. We apply our results to Ross-MacDonald malaria models with an incubation period (extrinsic or intrinsic).

    Citation: Cruz Vargas-De-León. Global analysis of a delayed vector-bias model for malariatransmission with incubation period in mosquitoes[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 165-174. doi: 10.3934/mbe.2012.9.165

    Related Papers:

    [1] Hongyong Zhao, Yangyang Shi, Xuebing Zhang . Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias. Mathematical Biosciences and Engineering, 2022, 19(3): 2538-2574. doi: 10.3934/mbe.2022117
    [2] Rundong Zhao, Qiming Liu, Huazong Zhang . Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks. Mathematical Biosciences and Engineering, 2021, 18(4): 3073-3091. doi: 10.3934/mbe.2021154
    [3] Divine Wanduku . The stochastic extinction and stability conditions for nonlinear malaria epidemics. Mathematical Biosciences and Engineering, 2019, 16(5): 3771-3806. doi: 10.3934/mbe.2019187
    [4] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995
    [5] Jia Li . Malaria model with stage-structured mosquitoes. Mathematical Biosciences and Engineering, 2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753
    [6] Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361
    [7] Fahad Al Basir, Yasuhiro Takeuchi, Santanu Ray . Dynamics of a delayed plant disease model with Beddington-DeAngelis disease transmission. Mathematical Biosciences and Engineering, 2021, 18(1): 583-599. doi: 10.3934/mbe.2021032
    [8] Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang . Global dynamics of an age-structured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 1625-1653. doi: 10.3934/mbe.2019078
    [9] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [10] Ann Nwankwo, Daniel Okuonghae . Mathematical assessment of the impact of different microclimate conditions on malaria transmission dynamics. Mathematical Biosciences and Engineering, 2019, 16(3): 1414-1444. doi: 10.3934/mbe.2019069
  • A delayed vector-bias model for malaria transmission with incubation period in mosquitoes is studied. The delay $\tau$ corresponds to the time necessary for a latently infected vector to become an infectious vector. We prove that the global stability is completely determined by the threshold parameter, $R_0(\tau)$. If $R_0(\tau)\leq1$, the disease-free equilibrium is globally asymptotically stable. If $R_0(\tau)>1$ a unique endemic equilibrium exists and is globally asymptotically stable. We apply our results to Ross-MacDonald malaria models with an incubation period (extrinsic or intrinsic).


  • This article has been cited by:

    1. Cruz Vargas-De-León, Noé Chan Chí, Eric Ávila Vales, Global analysis of virus dynamics model with logistic mitosis, cure rate and delay in virus production, 2015, 38, 01704214, 646, 10.1002/mma.3096
    2. Bruno Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control, 2015, 08, 1793-5245, 1550077, 10.1142/S1793524515500771
    3. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    4. J. F. GÓMEZ-AGUILAR, T. CÓRDOVA-FRAGA, THABET ABDELJAWAD, AZIZ KHAN, HASIB KHAN, ANALYSIS OF FRACTAL–FRACTIONAL MALARIA TRANSMISSION MODEL, 2020, 28, 0218-348X, 2040041, 10.1142/S0218348X20400411
    5. Lourdes Esteva, Cristobal Vargas, Cruz Vargas de León, The role of asymptomatics and dogs on leishmaniasis propagation, 2017, 293, 00255564, 46, 10.1016/j.mbs.2017.08.006
    6. Xiaomei Feng, Shigui Ruan, Zhidong Teng, Kai Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, 2015, 266, 00255564, 52, 10.1016/j.mbs.2015.05.005
    7. Bruno Buonomo, Cruz Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of malaria transmission, 2013, 242, 00255564, 59, 10.1016/j.mbs.2012.12.001
    8. Zhiting Xu, Yiyi Zhang, Traveling wave phenomena of a diffusive and vector-bias malaria model, 2015, 14, 1534-0392, 923, 10.3934/cpaa.2015.14.923
    9. Xia Wang, Yuming Chen, Shengqiang Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, 2018, 37, 0101-8205, 4055, 10.1007/s40314-017-0560-8
    10. Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984
    11. Yangyang Shi, Hongyong Zhao, Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias, 2021, 82, 0303-6812, 10.1007/s00285-021-01577-3
    12. Zhiting Xu, Yiyi Zhang, Spatial dynamics of a time-delayed reaction and diffusion malaria model, 2015, 80, 0272-4960, 1124, 10.1093/imamat/hxu044
    13. Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723
    14. Li-Ming Cai, Xue-Zhi Li, Bin Fang, Shigui Ruan, Global properties of vector–host disease models with time delays, 2017, 74, 0303-6812, 1397, 10.1007/s00285-016-1047-8
    15. Chunyue Wang, Jinliang Wang, Analysis of a malaria epidemic model with age structure and spatial diffusion, 2021, 72, 0044-2275, 10.1007/s00033-021-01511-z
    16. Cruz Vargas-De-León, Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, 2012, 219, 00963003, 389, 10.1016/j.amc.2012.06.029
    17. Li-Ming Cai, Maia Martcheva, Xue-Zhi Li, Competitive exclusion in a vector–host epidemic model with distributed delay†, 2013, 7, 1751-3758, 47, 10.1080/17513758.2013.772253
    18. Zhenguo Bai, Rui Peng, Xiao-Qiang Zhao, A reaction–diffusion malaria model with seasonality and incubation period, 2018, 77, 0303-6812, 201, 10.1007/s00285-017-1193-7
    19. H. Abboubakar, B. Buonomo, N. Chitnis, Modelling the effects of malaria infection on mosquito biting behaviour and attractiveness of humans, 2016, 65, 0035-5038, 329, 10.1007/s11587-016-0293-9
    20. Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, 2020, 14, 1751-3758, 332, 10.1080/17513758.2020.1745912
    21. Willem Takken, Niels O. Verhulst, Host Preferences of Blood-Feeding Mosquitoes, 2013, 58, 0066-4170, 433, 10.1146/annurev-ento-120811-153618
    22. Cruz Vargas-De-León, Lourdes Esteva, Andrei Korobeinikov, Age-dependency in host-vector models: The global analysis, 2014, 243, 00963003, 969, 10.1016/j.amc.2014.06.042
    23. Dan Tian, Haitao Song, Global dynamics of a Vector-Borne disease model with two delays and nonlinear transmission rate, 2017, 40, 01704214, 6411, 10.1002/mma.4464
    24. Zhiting Xu, On the global attractivity of a nonlocal and vector-bias malaria model, 2021, 121, 08939659, 107459, 10.1016/j.aml.2021.107459
    25. Peter Rashkov, Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration, 2022, 19, 1551-0018, 4038, 10.3934/mbe.2022185
    26. Sanaa Moussa Salman, A singularly perturbed vector‐bias malaria model incorporating bed net control, 2022, 0170-4214, 10.1002/mma.8822
    27. Alian Li-Martín, Ramón Reyes-Carreto, Cruz Vargas-De-León, Dynamics of a dengue disease transmission model with two-stage structure in the human population, 2022, 20, 1551-0018, 955, 10.3934/mbe.2023044
    28. Samiran Ghosh, Vitaly Volpert, Malay Banerjee, An Epidemic Model with Time-Distributed Recovery and Death Rates, 2022, 84, 0092-8240, 10.1007/s11538-022-01028-0
    29. Thongchai Botmart, Qusain Hiader, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Wajaree Weera, Stochastic Investigations for the Fractional Vector-Host Diseased Based Saturated Function of Treatment Model, 2023, 74, 1546-2226, 559, 10.32604/cmc.2023.031871
    30. María Guadalupe Vázquez-Peña, Cruz Vargas-De-León, Jorge Fernando Camacho-Pérez, Jorge Velázquez-Castro, Analysis and Bayesian estimation of a model for Chikungunya dynamics with relapse: An outbreak in Acapulco, Mexico, 2023, 20, 1551-0018, 18123, 10.3934/mbe.2023805
    31. Jinliang Wang, Hao Qu, Desheng Ji, Analysis of a reaction–diffusion dengue model with vector bias on a growing domain, 2023, 0003-6811, 1, 10.1080/00036811.2023.2281506
    32. Iffatricia Haura Febiriana, Abdullah Hasan Hassan, Dipo Aldila, Qiankun Song, Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization, 2024, 2024, 1687-0042, 1, 10.1155/2024/9943698
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3100) PDF downloads(749) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog