Citation: Lin Dong, Michael Grissom, Frank T. Fisher. Resonant frequency of mass-loaded membranes for vibration energy harvesting applications[J]. AIMS Energy, 2015, 3(3): 344-359. doi: 10.3934/energy.2015.3.344
[1] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
[2] | Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306 |
[3] | Shuyang Xue, Meili Li, Junling Ma, Jia Li . Sex-structured wild and sterile mosquito population models with different release strategies. Mathematical Biosciences and Engineering, 2019, 16(3): 1313-1333. doi: 10.3934/mbe.2019064 |
[4] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[5] | Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057 |
[6] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[7] | Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696 |
[8] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[9] | Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299 |
[10] | Andrea Franceschetti, Andrea Pugliese, Dimitri Breda . Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences and Engineering, 2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577 |
[1] |
Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17: R175-R195. doi: 10.1088/0957-0233/17/12/R01
![]() |
[2] |
Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17: 043001. doi: 10.1088/0964-1726/17/4/043001
![]() |
[3] |
Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71: 121-160. doi: 10.1080/10584580590964574
![]() |
[4] | Harrop P, Das R (2010) IDTechEx Report: Energy harvesting and storage for electronic devices 2010-2020. IDTechEx. Ltda. |
[5] |
Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26: 1131-1144. doi: 10.1016/S0140-3664(02)00248-7
![]() |
[6] |
Scheibner D, Mehner J, Reuter D, et al. (2005) A spectral vibration detection system based on tunable micromechanical resonators. Sensor Actuat A-Phys 123-124: 63-72. doi: 10.1016/j.sna.2005.03.034
![]() |
[7] | Peters C, Maurath D, Schock W, et al. (2008) Novel electrically tunable mechanical resonator for energy harvesting. Proceedings of Power MEMS 2008 November 9-12, Sendai, Japan, 253-256. |
[8] |
Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15: 1413-1420. doi: 10.1088/0964-1726/15/5/030
![]() |
[9] |
Challa VR, Prasad MG, Shi Y, et al. (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17: 015035. doi: 10.1088/0964-1726/17/01/015035
![]() |
[10] |
Zhu D, Roberts S, Tudor MJ, et al. (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensor Actuat A-Phys 158: 284-293. doi: 10.1016/j.sna.2010.01.002
![]() |
[11] |
Rezaeisaray M, Gowini MEI, Sameoto D, et al. (2015) Wide-bandwidth piezoelectric energy harvester with polymeric structure. J Micromech Microeng 25: 015018. doi: 10.1088/0960-1317/25/1/015018
![]() |
[12] |
Mo C, Davidson J, Clark WW (2014) Energy harvesting with piezoelectric circular membrane under pressure loading. Smart Mater Struct 23: 045005. doi: 10.1088/0964-1726/23/4/045005
![]() |
[13] |
Wang W, Yang T (2012) Vibration energy harvesting using a piezoelectric circular diaphragm array. IEEE T Ultrason Ferr 59: 2022-2026. doi: 10.1109/TUFFC.2012.2422
![]() |
[14] |
Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sensor Actuat A-Phys 52: 8-11. doi: 10.1016/0924-4247(96)80118-X
![]() |
[15] | Fletcher NH (1992) Acoustic Systems in Biology. New York: Oxford University Press, Inc, 73-82. |
[16] | Timoshenko S, Young DH (1955) Vibration Problems in Engineering, ed. 3rd., New York, NY: D. Van Nostrand Co., Inc, 439-440. |
[17] |
Pelrine R, Kornbluh R, Pei Q, et al. (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287: 836-839. doi: 10.1126/science.287.5454.836
![]() |
[18] | Kofod G (2001) Dielectric elastomer actuators [Ph.D. Thesis] [Kongens Lyngby, Denmark]: The Technical University of Denmark. |
[19] |
Kofod G (2008) The static actuation of dielectric elastomer actuators: How does pre-stretch improve actuation? Journal Phys D Appl Phys 41: 215405. doi: 10.1088/0022-3727/41/21/215405
![]() |
[20] |
Wissler M, Mazza E (2005) Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct 14: 1396. doi: 10.1088/0964-1726/14/6/032
![]() |
[21] |
Zhu D, Tudor M J, Beeby SP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas Sci Technol 21: 022001. doi: 10.1088/0957-0233/21/2/022001
![]() |
[22] |
Challa VR, Prasad MG, Fisher FT (2011) Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct 20: 025004. doi: 10.1088/0964-1726/20/2/025004
![]() |
1. | Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1 | |
2. | Yanyan Du, Qimin Zhang, Anke Meyer-Baese, The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, 2021, 165, 01689274, 198, 10.1016/j.apnum.2021.02.015 | |
3. | Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5 | |
4. | Benjamin Wacker, Jan Christian Schlüter, Qualitative analysis of two systems of nonlinear first‐order ordinary differential equations for biological systems, 2022, 45, 0170-4214, 4597, 10.1002/mma.8056 | |
5. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics, 2023, 20, 1551-0018, 11656, 10.3934/mbe.2023518 | |
6. | Benjamin Wacker, Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method, 2023, 46, 0170-4214, 16625, 10.1002/mma.9464 | |
7. | Haoyu Wu, David A. Stephens, Erica E. M. Moodie, An SIR‐based Bayesian framework for COVID‐19 infection estimation, 2024, 52, 0319-5724, 10.1002/cjs.11817 | |
8. | Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577 | |
9. | Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343 | |
10. | Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798 | |
11. | Benjamin Wacker, Analysis of a Finite‐Difference Method Based on Nonlocal Approximations for a Nonlinear, Extended Three‐Compartmental Model of Ethanol Metabolism in the Human Body, 2025, 0170-4214, 10.1002/mma.10858 | |
12. | Gerbert Romijn, Niek Stadhouders, Johan Polder, Application of an Epi-Econ-Model to Analyze COVID-19 Lockdown Policies in the Netherlands: Lessons and Limitations, 2025, 2194-5888, 1, 10.1017/bca.2025.10 |