Loading [Contrib]/a11y/accessibility-menu.js
Research article Special Issues

Resonant frequency of mass-loaded membranes for vibration energy harvesting applications

  • Received: 13 April 2015 Accepted: 05 August 2015 Published: 13 August 2015
  • Vibration based energy harvesting has been widely investigated to target ambient vibration sources as a means to generate small amounts of electrical energy. While cantilever-based geometries have been pursued frequently in the literature, here membrane-based geometries for the energy harvesting device is considered, with the effects of an added mass and tension on the effective resonant frequency of the membranes studied. An analytical model is developed to describe the vibration response for a circular membrane with added mass structure, with the results closely agreeing with finite element simulation in ANSYS. A complementary study of square membranes loaded with a central mass shows analogous behavior. The analytical model is then used to interpret the experimentally observed shift in resonance frequency of a circular membrane with a proof mass. The impact of membrane tension and central proof mass on the resonant frequency of the membrane suggests that this approach may be used as a tuning method to optimize the response of membrane-based designs for maximum power output for vibration energy harvesting applications.

    Citation: Lin Dong, Michael Grissom, Frank T. Fisher. Resonant frequency of mass-loaded membranes for vibration energy harvesting applications[J]. AIMS Energy, 2015, 3(3): 344-359. doi: 10.3934/energy.2015.3.344

    Related Papers:

    [1] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304
    [2] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [3] Shuyang Xue, Meili Li, Junling Ma, Jia Li . Sex-structured wild and sterile mosquito population models with different release strategies. Mathematical Biosciences and Engineering, 2019, 16(3): 1313-1333. doi: 10.3934/mbe.2019064
    [4] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [5] Rinaldo M. Colombo, Mauro Garavello . Optimizing vaccination strategies in an age structured SIR model. Mathematical Biosciences and Engineering, 2020, 17(2): 1074-1089. doi: 10.3934/mbe.2020057
    [6] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [7] Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696
    [8] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [9] Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299
    [10] Andrea Franceschetti, Andrea Pugliese, Dimitri Breda . Multiple endemic states in age-structured $SIR$ epidemic models. Mathematical Biosciences and Engineering, 2012, 9(3): 577-599. doi: 10.3934/mbe.2012.9.577
  • Vibration based energy harvesting has been widely investigated to target ambient vibration sources as a means to generate small amounts of electrical energy. While cantilever-based geometries have been pursued frequently in the literature, here membrane-based geometries for the energy harvesting device is considered, with the effects of an added mass and tension on the effective resonant frequency of the membranes studied. An analytical model is developed to describe the vibration response for a circular membrane with added mass structure, with the results closely agreeing with finite element simulation in ANSYS. A complementary study of square membranes loaded with a central mass shows analogous behavior. The analytical model is then used to interpret the experimentally observed shift in resonance frequency of a circular membrane with a proof mass. The impact of membrane tension and central proof mass on the resonant frequency of the membrane suggests that this approach may be used as a tuning method to optimize the response of membrane-based designs for maximum power output for vibration energy harvesting applications.


    [1] Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17: R175-R195. doi: 10.1088/0957-0233/17/12/R01
    [2] Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17: 043001. doi: 10.1088/0964-1726/17/4/043001
    [3] Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71: 121-160. doi: 10.1080/10584580590964574
    [4] Harrop P, Das R (2010) IDTechEx Report: Energy harvesting and storage for electronic devices 2010-2020. IDTechEx. Ltda.
    [5] Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26: 1131-1144. doi: 10.1016/S0140-3664(02)00248-7
    [6] Scheibner D, Mehner J, Reuter D, et al. (2005) A spectral vibration detection system based on tunable micromechanical resonators. Sensor Actuat A-Phys 123-124: 63-72. doi: 10.1016/j.sna.2005.03.034
    [7] Peters C, Maurath D, Schock W, et al. (2008) Novel electrically tunable mechanical resonator for energy harvesting. Proceedings of Power MEMS 2008 November 9-12, Sendai, Japan, 253-256.
    [8] Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15: 1413-1420. doi: 10.1088/0964-1726/15/5/030
    [9] Challa VR, Prasad MG, Shi Y, et al. (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17: 015035. doi: 10.1088/0964-1726/17/01/015035
    [10] Zhu D, Roberts S, Tudor MJ, et al. (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sensor Actuat A-Phys 158: 284-293. doi: 10.1016/j.sna.2010.01.002
    [11] Rezaeisaray M, Gowini MEI, Sameoto D, et al. (2015) Wide-bandwidth piezoelectric energy harvester with polymeric structure. J Micromech Microeng 25: 015018. doi: 10.1088/0960-1317/25/1/015018
    [12] Mo C, Davidson J, Clark WW (2014) Energy harvesting with piezoelectric circular membrane under pressure loading. Smart Mater Struct 23: 045005. doi: 10.1088/0964-1726/23/4/045005
    [13] Wang W, Yang T (2012) Vibration energy harvesting using a piezoelectric circular diaphragm array. IEEE T Ultrason Ferr 59: 2022-2026. doi: 10.1109/TUFFC.2012.2422
    [14] Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sensor Actuat A-Phys 52: 8-11. doi: 10.1016/0924-4247(96)80118-X
    [15] Fletcher NH (1992) Acoustic Systems in Biology. New York: Oxford University Press, Inc, 73-82.
    [16] Timoshenko S, Young DH (1955) Vibration Problems in Engineering, ed. 3rd., New York, NY: D. Van Nostrand Co., Inc, 439-440.
    [17] Pelrine R, Kornbluh R, Pei Q, et al. (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287: 836-839. doi: 10.1126/science.287.5454.836
    [18] Kofod G (2001) Dielectric elastomer actuators [Ph.D. Thesis] [Kongens Lyngby, Denmark]: The Technical University of Denmark.
    [19] Kofod G (2008) The static actuation of dielectric elastomer actuators: How does pre-stretch improve actuation? Journal Phys D Appl Phys 41: 215405. doi: 10.1088/0022-3727/41/21/215405
    [20] Wissler M, Mazza E (2005) Modeling and simulation of dielectric elastomer actuators. Smart Mater Struct 14: 1396. doi: 10.1088/0964-1726/14/6/032
    [21] Zhu D, Tudor M J, Beeby SP (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas Sci Technol 21: 022001. doi: 10.1088/0957-0233/21/2/022001
    [22] Challa VR, Prasad MG, Fisher FT (2011) Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater Struct 20: 025004. doi: 10.1088/0964-1726/20/2/025004
  • This article has been cited by:

    1. Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1
    2. Yanyan Du, Qimin Zhang, Anke Meyer-Baese, The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, 2021, 165, 01689274, 198, 10.1016/j.apnum.2021.02.015
    3. Benjamin Wacker, Jan Christian Schlüter, A cubic nonlinear population growth model for single species: theory, an explicit–implicit solution algorithm and applications, 2021, 2021, 1687-1847, 10.1186/s13662-021-03399-5
    4. Benjamin Wacker, Jan Christian Schlüter, Qualitative analysis of two systems of nonlinear first‐order ordinary differential equations for biological systems, 2022, 45, 0170-4214, 4597, 10.1002/mma.8056
    5. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Nonlocal finite difference discretization of a class of renewal equation models for epidemics, 2023, 20, 1551-0018, 11656, 10.3934/mbe.2023518
    6. Benjamin Wacker, Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method, 2023, 46, 0170-4214, 16625, 10.1002/mma.9464
    7. Haoyu Wu, David A. Stephens, Erica E. M. Moodie, An SIR‐based Bayesian framework for COVID‐19 infection estimation, 2024, 52, 0319-5724, 10.1002/cjs.11817
    8. Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577
    9. Benjamin Wacker, Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis, 2024, 21, 1551-0018, 7805, 10.3934/mbe.2024343
    10. Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798
    11. Benjamin Wacker, Analysis of a Finite‐Difference Method Based on Nonlocal Approximations for a Nonlinear, Extended Three‐Compartmental Model of Ethanol Metabolism in the Human Body, 2025, 0170-4214, 10.1002/mma.10858
    12. Gerbert Romijn, Niek Stadhouders, Johan Polder, Application of an Epi-Econ-Model to Analyze COVID-19 Lockdown Policies in the Netherlands: Lessons and Limitations, 2025, 2194-5888, 1, 10.1017/bca.2025.10
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8308) PDF downloads(1660) Cited by(16)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog