Citation: Ann Nwankwo, Daniel Okuonghae. Mathematical assessment of the impact of different microclimate conditions on malaria transmission dynamics[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1414-1444. doi: 10.3934/mbe.2019069
[1] | Benoît Perthame, Edouard Ribes, Delphine Salort . Career plans and wage structures: a mean field game approach. Mathematics in Engineering, 2019, 1(1): 38-54. doi: 10.3934/Mine.2018.1.38 |
[2] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[3] | Diogo Gomes, Julian Gutierrez, Ricardo Ribeiro . A mean field game price model with noise. Mathematics in Engineering, 2021, 3(4): 1-14. doi: 10.3934/mine.2021028 |
[4] | Mario Pulvirenti . On the particle approximation to stationary solutions of the Boltzmann equation. Mathematics in Engineering, 2019, 1(4): 699-714. doi: 10.3934/mine.2019.4.699 |
[5] | Pablo Blanc, Fernando Charro, Juan J. Manfredi, Julio D. Rossi . Games associated with products of eigenvalues of the Hessian. Mathematics in Engineering, 2023, 5(3): 1-26. doi: 10.3934/mine.2023066 |
[6] | François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031 |
[7] | Dmitrii Rachinskii . Bifurcation of relative periodic solutions in symmetric systems with hysteretic constitutive relations. Mathematics in Engineering, 2025, 7(2): 61-95. doi: 10.3934/mine.2025004 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Luis Silvestre, Stanley Snelson . Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034 |
[10] | Serena Della Corte, Antonia Diana, Carlo Mantegazza . Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow. Mathematics in Engineering, 2022, 4(6): 1-104. doi: 10.3934/mine.2022054 |
The centrality of necessary conditions in optimal control is well-known and has originated an immense literature in the fields of optimization and nonsmooth analysis, see, e.g., [3,16,17,29,33,35].
In control theory, the celebrated Pontryagin Maximum Principle plays the role of the classical Euler-Lagrange equations in the calculus of variations. In the case of unrestricted state space, such conditions provide Lagrange multipliers---the so-called co-states---in the form of solutions to a suitable adjoint system satisfying a certain transversality condition. Among various applications of necessary optimality conditions is the deduction of further regularity properties for minimizers which, a priori, would just be absolutely continuous.
When state constraints are present, a large body of results provide adaptations of the Pontryagin Principle by introducing appropriate corrections in the adjoint system. The price to pay for such extensions usually consists of reduced regularity for optimal trajectories which, due to constraint reactions, turn out to be just Lipschitz continuous while the associated co-states are of bounded variation, see [20].
The maximum principle under state constraints was first established by Dubovitskii and Milyutin [17] (see also the monograph [35] for different forms of such a result). It may happen that the maximum principle is degenerate and does not yield much information (abnormal maximum principle). As explained in [8,10,18,19] in various contexts, the so-called "inward pointing condition" generally ensures the normality of the maximum principle under state constraints. In our setting (calculus of variation problem, with constraints on positions but not on velocities), this will never be an issue. The maximum principle under state constraints generally involves an adjoint state which is the sum of a
Let
Γ={γ∈AC(0,T;Rn): γ(t)∈¯Ω, ∀t∈[0,T]}, |
with the uniform metric. For any
Γ[x]={γ∈Γ:γ(0)=x}. |
We consider the problem of minimizing the classical functional of the calculus of variations
J[γ]=∫T0f(t,γ(t),˙γ(t))dt+g(γ(T)). |
Let
infγ∈Γ[x]J[γ], where J[γ]={∫T0f(t,γ(t),˙γ(t))dt+g(γ(T))}, | (1.1) |
where
{˙γ⋆(t)=−DpH(t,γ⋆(t),p(t)) for all t∈[0,T]˙p(t)=DxH(t,γ⋆(t),p(t))−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆(t))for a. e. t∈[0,T] | (1.2) |
where
infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. |
Then, we show that all solutions of the penalized problem remain in
A direct consequence of our necessary conditions is the Lipschitz regularity of the value function associated to (1.1) (Proposition 4.1).
Our interest is also motivated by application to mean field games, as we explain below. Mean field games (MFG) theory has been developed simultaneously by Lasry and Lions ([25,26,27]) and by Huang, Malhamé and Caines ([23,24]) in order to study differential games with an infinite number of rational players in competition. The simplest MFG model leads to systems of partial differential equations involving two unknown functions: the value function
This paper is organised as follows. In Section 2, we introduce the notation and recall preliminary results. In Section 3, we derive necessary conditions for the constrained problem. Moreover, we prove the
Throughout this paper we denote by
||A||=maxx∈Rn,|x|=1||Ax|| . |
For any subset
1S(x)={1 x∈S,0x∈Sc. |
We write
Let
‖ϕ‖k,∞:=supx∈U|α|≤k|Dαϕ(x)|<∞ |
Let
The distance function from
dΩ(x):=infy∈¯Ω|x−y| (x∈Rn). |
We define the oriented boundary distance from
bΩ(x)=dΩ(x)−dΩc(x) (x∈Rn). |
We recall that, since the boundary of
bΩ(⋅)∈C2b on Σρ0={y∈B(x,ρ0):x∈∂Ω}. | (2.1) |
Throughout the paper, we suppose that
Take a continuous function
p⋅(y−x)≤f(y)−f(x)+C|y−x|2 for all y that satisfy |y−x|≤ϵ. |
The set of all proximal subetaadients of
The set of all limiting subetaadients of
Lemma 2.1. Let
∂pdΩ(x)=∂dΩ(x)={DbΩ(x) 0<bΩ(x)<ρ0,DbΩ(x)[0,1]x∈∂Ω,0x∈Ω, |
where
The proof is given in the Appendix.
Let
supp(η):={x∈X:η(V)>0 for each neighborhood V of x}. |
We say that a sequence
limi→∞∫Xf(x)dηi(x)=∫Xf(x)dη ∀f∈Cb(X). |
We denote by
d1(m,m′)=sup{∫Xf(x)dm(x)−∫Xf(x)dm′(x) | f:X→R is 1-Lipschitz}, | (2.2) |
for all
Let
d1(m(t),m(s))≤C|t−s|, ∀t,s∈[0,T], | (2.3) |
for some constant
Let
Γ={γ∈AC(0,T;Rn): γ(t)∈¯Ω, ∀t∈[0,T]}. |
For any
Γ[x]={γ∈Γ:γ(0)=x}. |
Let
infγ∈Γ[x]J[γ], where J[γ]={∫T0f(t,γ(t),˙γ(t))dt+g(γ(T))}. | (3.1) |
We denote by
X[x]={γ⋆∈Γ[x]:J[γ⋆]=infΓ[x]J[γ]}. |
We assume that
(g1)
(f0)
|f(t,x,0)|+|Dxf(t,x,0)|+|Dvf(t,x,0)|≤M ∀ (t,x)∈[0,T]×U. | (3.2) |
(f1) For all
Iμ≤D2vvf(t,x,v)≤Iμ, | (3.3) |
||D2vxf(t,x,v)||≤μ(1+|v|), | (3.4) |
for all
(f2) For all
|f(t,x,v)−f(s,x,v)|≤κ(1+|v|2)|t−s| | (3.5) |
|Dvf(t,x,v)−Dvf(s,x,v)|≤κ(1+|v|)|t−s| | (3.6) |
for all
Remark 3.1. By classical results in the calculus of variation (see, e.g., [15, Theorem 11.1i]), there exists at least one minimizer of (3.1) in
In the next lemma we show that (f0)-(f2) imply the useful growth conditions for
Lemma 3.1. Suppose that (f0)-(f2) hold. Then, there exists a positive constant
|Dvf(t,x,v)|≤C(μ,M)(1+|v|), | (3.7) |
|Dxf(t,x,v)|≤C(μ,M)(1+|v|2), | (3.8) |
14μ|v|2−C(μ,M)≤f(t,x,v)≤4μ|v|2+C(μ,M), | (3.9) |
for all
Proof. By (3.2), and by (3.3) one has that
|Dvf(t,x,v)|≤|Dvf(t,x,v)−Dvf(t,x,0)|+|Dvf(t,x,0)|≤∫10|D2vvf(t,x,τv)||v|dτ+|Dvf(t,x,0)|≤μ|v|+M≤C(μ,M)(1+|v|) |
and so (3.7) holds. Furthermore, by (3.2), and by (3.4) we have that
|Dxf(t,x,v)|≤|Dxf(t,x,v)−Dxf(t,x,0)|+|Dxf(t,x,0)|≤∫10|D2xvf(t,x,τv)||v|dτ+M≤μ(1+|v|)|v|+M≤C(μ,M)(1+|v|2). |
Therefore, (3.8) holds. Moreover, fixed
f(t,x,v)=f(t,x,0)+⟨Dvf(t,x,0),v⟩+12⟨D2vvf(t,x,ξ)v,v⟩. |
By (3.2), (3.3), and by (3.7) we have that
−C(μ,M)+14μ|v|2≤−M−C(μ,M)|v|+12μ|v|2≤f(t,x,v)≤M+C(μ,M)|v|+μ2|v|2≤C(μ,M)+4μ|v|2, |
and so (3.9) holds. This completes the proof.
In the next result we show a special property of the minimizers of (3.1).
Lemma 3.2. For any
∫T014μ|˙γ⋆(t)|2dt≤K, |
where
K:=T(C(μ,M)+M)+2maxU|g(x)|. | (3.10) |
Proof. Let
∫T0f(t,γ⋆(t),˙γ⋆(t))dt+g(γ⋆(T))≤∫T0f(t,x,0)dt+g(x)≤Tmax[0,T]×U|f(t,x,0)|+maxU|g(x)|. | (3.11) |
Using (3.2) and (3.9) in (3.11), one has that
∫T014μ|˙γ⋆(t)|2dt≤K, |
where
K:=T(C(μ,M)+M)+2maxU|g(x)|. |
We denote by
H(t,x,p)=supv∈Rn{−⟨p,v⟩−f(t,x,v)},∀ (t,x,p)∈[0,T]×U×Rn. |
Our assumptions on
(H0)
|H(t,x,0)|+|DxH(t,x,0)|+|DpH(t,x,0)|≤M′ ∀ (t,x)∈[0,T]×U. | (3.12) |
(H1) For all
Iμ≤D2ppH(t,x,p)≤Iμ, | (3.13) |
||D2pxH(t,x,p)||≤C(μ,M′)(1+|p|), | (3.14) |
for all
(H2) For all
|H(t,x,p)−H(s,x,p)|≤κC(μ,M′)(1+|p|2)|t−s|, | (3.15) |
|DpH(t,x,p)−DpH(s,x,p)|≤κC(μ,M′)(1+|p|)|t−s|, | (3.16) |
for all
Remark 3.2. Arguing as in Lemma 3.1 we deduce that
|DpH(t,x,p)|≤C(μ,M′)(1+|p|), | (3.17) |
|DxH(t,x,p)|≤C(μ,M′)(1+|p|2), | (3.18) |
14μ|p|2−C(μ,M′)≤H(t,x,p)≤4μ|p|2+C(μ,M′), | (3.19) |
for all
Under the above assumptions on
Theorem 3.1. For any
(i)
(ii) There exist:
(a) a Lipschitz continuous arc
(b) a constant
0≤ν≤max{1,2μ supx∈U|DpH(T,x,Dg(x))|}, |
which satisfy the adjoint system
{˙γ⋆=−DpH(t,γ⋆,p) for all t∈[0,T],˙p=DxH(t,γ⋆,p)−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆)for a.e. t∈[0,T], | (3.20) |
and the transversality condition
p(T)=Dg(γ⋆(T))+νDbΩ(γ⋆(T))1∂Ω(γ⋆(T)), |
where
Moreover,
(iii) the following estimate holds
||˙γ⋆||∞≤L⋆, ∀γ⋆∈X[x], | (3.21) |
where
The (feedback) function
In this section, we prove Theorem 3.1 in the special case of
The proof is based on [12, Theorem 2.1] where the Maximum Principle under state constraints is obtained for a Mayer problem. The reasoning requires several intermediate steps.
Fix
infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. | (3.22) |
Then, we will show that, for
Observe that the Hamiltonian associated with the penalized problem is given by
Hϵ(t,x,p)=supv∈Rn{−⟨p,v⟩−f(t,x,v)−1ϵ dΩ(x)}=H(t,x,p)−1ϵ dΩ(x), | (3.23) |
for all
By classical results in the calculus of variation (see, e.g., [15, Section 11.2]), there exists at least one mimimizer of (3.22) in
Remark 3.3. Arguing as in Lemma 3.2 we have that, for any
∫T0[14μ|˙γ(t)|2+1ϵ dΩ(γ(t))]dt≤K, | (3.24) |
where
The first step of the proof consists in showing that the solutions of the penalized problem remain in a neighborhood of
Lemma 3.3. Let
∀ x∈¯Ω, γ∈Xϵ,δ[x] ⟹ supt∈[0,T]dΩ(γ(t))≤ρ. | (3.25) |
Proof. We argue by contradiction. Assume that, for some
ϵk↓0, δk>0, tk∈[0,T], xk∈¯Ω, γk∈Xϵk,δk[xk] and dΩ(γk(tk))>ρ, for all k≥1. |
By Remark 3.3, one has that for all
∫T0[14μ|˙γk(t)|2+1ϵk dΩ(γk(t))]dt≤K, |
where
dΩ(γk(tk))−dΩ(γk(s))≤(4μK)1/2|tk−s|1/2, s∈[0,T]. |
Since
dΩ(γk(s))>ρ−(4μK)1/2|tk−s|1/2. |
Hence,
K≥1ϵk∫T0dΩ(γk(t))dt≥1ϵk∫JdΩ(γk(t))dt≥1ϵkρ332μK. |
But the above inequality contradicts the fact that
In the next lemma, we show the necessary conditions for the minimizers of the penalized problem.
Lemma 3.4. Let
(i)
(ii) there exists an arc
{˙γ(t)=−DpH(t,γ(t),p(t)), for all t∈[0,T],˙p(t)=DxH(t,γ(t),p(t))−λ(t)ϵ DbΩ(γ(t)),for a.e. t∈[0,T],p(T)=Dg(γ(T))+βδ DbΩ(γ(T)), | (3.26) |
where
λ(t)∈{{0}ifγ(t)∈Ω,{1}if0<dΩ(γ(t))<ρ,[0,1]ifγ(t)∈∂Ω, | (3.27) |
and
β∈{{0}ifγ(T)∈Ω,{1}if0<dΩ(γ(T))<ρ,[0,1]ifγ(T)∈∂Ω. | (3.28) |
Moreover,
(iii) the function
r(t):=H(t,γ(t),p(t))−1ϵ dΩ(γ(t)), ∀t∈[0,T] |
belongs to
∫T0|˙r(t)|dt≤κ(T+4μK), |
where
(iv) the following estimate holds
|p(t)|2≤4μ[1ϵdΩ(γ(t))+C1δ2], ∀t∈[0,T], | (3.29) |
where
Proof. In order to use the Maximum Principle in the version of [35, Theorem 8.7.1], we rewrite (3.22) as a Mayer problem in a higher dimensional state space. Define
X(t)=(γ(t)z(t)), |
where
{˙X(t)=(˙γ(t)˙z(t))=Fϵ(t,X(t),u(t)),X(0)=(x00). |
where
Fϵ(t,X,u)=(uLϵ(t,x,u)) |
and
min{Φ(Xu(T)):u∈L1}, | (3.30) |
where
Hϵ(t,X,P,u)=−⟨P,Fϵ(t,X,u)⟩,∀(t,X,P,u)∈[0,T]×Rn+1×Rn+1×Rn. |
We observe that, as
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
(ⅴ)
where
(p,b,λ0)≢(0,0,0), | (3.31) |
(˙r(t),˙p(t))∈−b(t) co ∂t,xLϵ(t,γ(t),˙γ(t)), | (3.32) |
˙b(t)=0, | (3.33) |
p(T)∈λ0 ∂(g+1δ dΩ)(γ(T)), | (3.34) |
b(T)=λ0, | (3.35) |
r(t)=Hϵ(t,γ(t),p(t)), | (3.36) |
where
Note that the Weierstrass Condition (ⅳ) becomes
−⟨p(t),˙γ(t)⟩−f(t,γ(t),˙γ(t))=supu∈Rn{−⟨p(t),u⟩−f(t,γ(t),u)}. | (3.37) |
Therefore
˙γ(t)=−DpH(t,γ(t),p(t)),a.e.t∈[0,T]. | (3.38) |
By Lemma 2.1, by the definition of
∂t,xLϵ(t,x,u)⊂{[−κ(1+|u|2),κ(1+|u|2)]×Dxf(t,x,u)ifx∈Ω,[−κ(1+|u|2),κ(1+|u|2)]×(Dxf(t,x,u)+1ϵ DbΩ(x))if0<bΩ(x)<ρ,[−κ(1+|u|2),κ(1+|u|2)]×(Dxf(t,x,u)+1ϵ[0,1] DbΩ(x))ifx∈∂Ω. |
Thus (3.32) implies that there exists
|˙r(t)|≤κ(1+|˙γ(t)|2), ∀t∈[0,T], | (3.39) |
˙p(t)=−Dxf(t,γ(t),˙γ(t))−λ(t)ϵ DbΩ(γ(t)), a.e. t∈[0,T]. | (3.40) |
Hence, by (3.39), and by Remark 3.3 we conclude that
∫T0|˙r(t)|dt≤κ∫T0(1+|˙γ(t)|2)dt≤κ(T+4μK). | (3.41) |
Moreover, by Lemma 2.1, and by assumption on
∂(g+1δ dΩ)(x)⊂{Dg(x)ifx∈Ω,Dg(x)+1δ DbΩ(x)if0<bΩ(x)<ρ,Dg(x)+1δ[0,1] DbΩ(x)ifx∈∂Ω. |
So, by (3.34), there exists
p(T)=Dg(x)+βδ DbΩ(x). | (3.42) |
Finally, by well-known properties of the Legendre transform one has that
DxH(t,x,p)=−Dxf(t,x,−DpH(t,x,p)). |
So, recalling (3.38), (3.40) can be rewritten as
˙p(t)=DxH(t,γ(t),p(t))−λ(t)ϵ DbΩ(γ(t)),a.e. t∈[0,T]. |
We have to prove estimate (3.29). Recalling (3.23) and (3.19), we have that
Hϵ(t,γ(t),p(t))=H(t,γ(t),p(t))−1ϵ dΩ(γ(t))≥14μ|p(t)|2−C(μ,M′)−1ϵ dΩ(γ(t)). |
So, using (3.41) one has that
|Hϵ(T,γ(T),p(T))−Hϵ(t,γ(t),p(t))|=|r(T)−r(t)|≤∫Tt|˙r(s)|ds≤κ(T+4μK). |
Moreover, (3.42) implies that
14μ|p(t)|2−C(μ,M′)−1ϵ dΩ(γ(t))≤Hϵ(t,γ(t),p(t))≤Hϵ(T,γ(T),p(T))+κ(T+4μK)≤4μ|p(T)|2+C(μ,M′)+κ(T+4μK)≤8μ[1δ2+||Dg||2∞]+C(μ,M′)+κ(T+4μK). |
Hence,
|p(t)|2≤4μ[1ϵdΩ(γ(t))+C1δ2], |
where
Finally, by the regularity of
Lemma 3.5. Let
Proof. Let
˙γ(t)=−DpH(t,γ(t),p(t)),˙p(t)=DxH(t,γ(t),p(t))−1ϵDbΩ(γ(t)), |
for
In the next two lemmas, we show that, for
ϵ0=ϵ(ρ0), where ρ0 is such that (2.1) holds and ϵ(⋅) is given by Lemma 3.3. |
Lemma 3.6. Let
δ=12μN∧1, | (3.43) |
where
N=supx∈Rn|DpH(T,x,Dg(x))|. |
Fix any
⟨˙γ(T),DbΩ(γ(T))⟩≤0. |
Proof. As
⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩=⟨DpH(T,γ(T),Dg(γ(T))),DbΩ(γ(T))⟩+⟨DpH(T,γ(T),Dg(γ(T))+1δ DbΩ(γ(T)))−DpH(T,γ(T),Dg(γ(T))),DbΩ(γ(T))⟩. |
Recalling that
⟨DpH(T,γ(T),Dg(γ(T))+1δ DbΩ(γ(T)))−DpH(T,γ(T),Dg(γ(T))),1δ DbΩ(γ(T))⟩≥12μ1δ2 |DbΩ(γ(T))|2=12δ2μ. |
So,
⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩≥12δμ−|DpH(T,γ(T),Dg(γ(T)))|. |
Therefore, we obtain
⟨˙γ(T),DbΩ(γ(T))⟩=−⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩≤−12δμ+|DpH(T,γ(T),Dg(γ(T)))|. |
Thus, choosing
Lemma 3.7. Fix
∀x∈¯Ω, γ∈Xϵ,δ[x] ⟹ γ(t)∈¯Ω ∀t∈[0,T]. |
Proof. We argue by contradiction. Assume that there exist sequences
ϵk↓0, tk∈[0,T], xk∈¯Ω, γk∈Xϵk,δ[xk] and γk(tk)∉¯Ω, for all k≥1. | (3.44) |
Then, for each
{dΩ(γk(ak))=0,dΩ(γk(t))>0 t∈(ak,bk),dΩ(γk(bk))=0 or else bk=T. |
Let
dΩ(γk(¯tk))=maxt∈[ak,bk]dΩ(γk(t)). |
We note that, by Lemma 3.5,
Step 1
We claim that
d2dt2dΩ(γk(t))|t=¯tk≤0. | (3.45) |
Indeed, (3.45) is trivial if
ddtdΩ(γk(t))|t=¯tk≥0. |
Moreover, Lemma 3.6 yields
ddtdΩ(γk(t))|t=¯tk≤0. |
So,
ddtdΩ(γk(t))|t=¯tk=0, |
and we have that (3.45) holds true at
Step 2
Now, we prove that
1μϵk≤C(μ,M′,κ)[1+4μC1δ2+4μϵk dΩ(γk(¯tk))], ∀k≥1, | (3.46) |
where
¨γ(¯tk)=−D2ptH(˜tk,γ(˜tk),p(˜tk))−⟨D2pxH(˜tk,γ(˜tk),p(˜tk)),˙γ(˜tk)⟩−⟨D2ppH(˜tk,γ(˜tk),p(˜tk)),˙p(˜tk)⟩. | (3.47) |
Developing the second order derivative of
0≥⟨D2dΩ(γ(˜tk))˙γ(˜tk),˙γ(˜tk)⟩+⟨DdΩ(γ(˜tk)),¨γ(˜tk)⟩=⟨D2dΩ(γ(˜tk))DpH(˜tk,γ(˜tk),p(˜tk)),DpH(˜tk,γ(˜tk),p(˜tk))⟩−⟨DdΩ(γ(˜tk)),D2ptH(˜tk,γ(˜tk),p(˜tk))⟩+⟨DdΩ(γ(˜tk)),D2pxH(˜tk,γ(˜tk),p(˜tk))DpH(˜tk,γ(˜tk),p(˜tk))⟩−⟨DdΩ(γ(˜tk)),D2ppH(˜tk,γ(˜tk),p(˜tk))DxH(˜tk,γ(˜tk),p(˜tk))⟩+1ϵ⟨DdΩ(γ(˜tk)),D2ppH(˜tk,γ(˜tk),p(˜tk))DdΩ(γ(˜tk))⟩. |
We now use the growth properties of
1μϵk≤C(μ,M′)(1+|p(˜tk)|)2+κC(μ,M′)(1+|p(˜tk)|)≤C(μ,M′,κ)(1+|p(˜tk)|2), |
where the constant
1μϵk≤C(μ,M′,κ)[1+4μC1δ2+4μϵkdΩ(γ(˜tk))], ∀ k≥1, |
where
Conclusion
Let
supt∈[0,T]dΩ(γ(t))≤ρ, ∀γ∈Xϵ,δ[x]. |
Hence, using (3.46), we deduce that
12μϵk≤4C(μ,M′,κ)[1+4μC1δ2]. |
Since the above inequality fails for
An obvious consequence of Lemma 3.7 is the following:
Corollary 3.1. Fix
We are now ready to complete the proof of Theorem 3.1.
Proof of Theorem 3.1. Let
p(T)=Dg(γ⋆(T))+ν DbΩ(γ⋆(T)). | (3.48) |
By Lemma 3.4
˙γ⋆(t)=−DpH(t,γ⋆(t),p(t)), ∀ t∈[0,T]. | (3.49) |
Moreover,
|p(t)|≤2√μC1δ, ∀t∈[0,T], |
where
||˙γ⋆||∞=supt∈[0,T]|DpH(t,γ⋆(t),p(t))|≤C(μ,M′)(supt∈[0,T]|p(t)|+1)≤C(μ,M′)(2√μC1δ+1))=L⋆, |
where
Finally, we want to find an explicit expression for
D={t∈[0,T]:γ⋆(t)∈∂Ω}andDρ0={t∈[0,T]:|bΩ(γ⋆(t))|<ρ0}, |
where
˙ψ(t)=⟨DbΩ(γ⋆(t)),˙γ⋆(t)⟩=⟨DbΩ(γ⋆(t)),−DpH(t,γ⋆(t),p(t))⟩. |
Since
¨ψ(t)=−⟨D2bΩ(γ⋆(t))˙γ⋆(t),DpH(t,γ⋆(t),p(t))⟩−⟨DbΩ(γ⋆(t)),D2ptH(t,γ⋆(t),p(t))⟩−⟨DbΩ(γ⋆(t)),D2pxH(t,γ⋆(t),p(t))˙γ⋆(t)⟩−⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))˙p(t)⟩=⟨D2bΩ(γ⋆(t))DpH(t,γ⋆(t),p(t)),DpH(t,γ⋆(t),p(t))⟩−⟨DbΩ(γ⋆(t)),D2ptH(t,γ⋆(t),p(t))⟩+⟨DbΩ(γ⋆(t)),D2pxH(t,γ⋆(t),p(t))DpH(t,γ⋆(t),p(t))⟩−⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))DxH(t,γ⋆(t),p(t))⟩+λ(t)ϵ ⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))DbΩ(γ⋆(t))⟩. |
Let
⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))DbΩ(γ⋆(t))⟩>0,a.e.t∈Dρ0. |
So, for a.e.
λ(t)ϵ=1⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))DbΩ(γ⋆(t))⟩ [⟨DbΩ(γ⋆(t)),D2ptH(t,γ⋆(t),p(t))⟩−⟨D2bΩ(γ⋆(t))DpH(t,γ⋆(t),p(t)),DpH(t,γ⋆(t),p(t))⟩−⟨DbΩ(γ⋆(t)),D2pxH(t,γ⋆(t),p(t))DpH(t,γ⋆(t),p(t))⟩+⟨DbΩ(γ⋆(t)),D2ppH(t,γ⋆(t),p(t))DxH(t,γ⋆(t),p(t))⟩]. |
Since
Remark 3.4. The above proof gives a representation of
Λ(t,x,p)=1θ(t,x,p) [−⟨D2bΩ(x)DpH(t,x,p),DpH(t,x,p)⟩−⟨DbΩ(x),D2ptH(t,x,p)⟩−⟨DbΩ(x),D2pxH(t,x,p)DpH(t,x,p)⟩+⟨DbΩ(x),D2ppH(t,x,p)DxH(t,x,p)⟩], |
where
We now want to remove the extra assumption
{ξ(x)=0 if x∈(−∞,13],0<ξ(x)<1if x∈(13,23),ξ=1if x∈[23,+∞). | (3.50) |
Lemma 3.8. Let
σ0=dist(¯Ω,Rn∖U)>0. |
Suppose that
˜f(t,x,v)=ξ(bΩ(x)σ)|v|22+(1−ξ(bΩ(x)σ))f(t,x,v), ∀ (t,x,v)∈[0,T]×Rn×Rn, |
that satisfies conditions (f0)-(f2) with
˜g(x)=(1−ξ(bΩ(x)σ))g(x), ∀x∈Rn, |
that satisfies condition (g1) with
Note that, since
Proof. By construction we note that
Dv˜f(t,x,v)=ξ(bΩ(x)σ)v+(1−ξ(bΩ(x)σ))Dvf(t,x,v), |
and
D2vv˜f(t,x,v)=ξ(bΩ(x)σ)I+(1−ξ(bΩ(x)σ))D2vvf(t,x,v). |
Hence, by the definition of
(1∧1μ)I≤D2vv˜f(t,x,v)≤(1∨μ)I, ∀ (t,x,v)∈[0,T]×Rn×Rn. |
Since
Moreover, since
Dx(Dv˜f(t,x,v))=˙ξ(bΩ(x)σ)v⊗DbΩ(x)σ+(1−ξ(bΩ(x)σ))D2vxf(t,x,v)−˙ξ(bΩ(x)σ)Dvf(t,x,v)⊗DbΩ(x)σ, |
and by (3.4) we obtain that
||D2vx˜f(t,x,v)||≤C(μ,M)(1+|v|) ∀(t,x,v)∈[0,T]×Rn×Rn. |
For all
|˜f(t,x,v)−˜f(s,x,v)|=|(1−ξ(bΩ(x)σ))[f(t,x,v)−f(s,x,v)]|≤κ(1+|v|2)|t−s| |
for all
|Dv˜f(t,x,v))−Dv˜f(s,x,v))|≤|(1−ξ(bΩ(x)σ))[Dvf(t,x,v)−Dvf(s,x,v))]|≤κ(1+|v|)|t−s|, |
for all
Finally, by the regularity of
Suppose that
u(t,x)=infγ∈Γγ(t)=x∫Ttf(s,γ(s),˙γ(s))ds+g(γ(T)). | (4.1) |
Proposition 4.1. Let
Proof. First, we shall prove that
\begin{align*} \begin{cases} {\bar \gamma}(t) = y, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) +\frac{x-y}{\tau} \ \ &\mbox{if} \ s\in[t, t+\tau] \ \ \text{a.e.}, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) \ \ &\mbox{otherwise}, \end{cases} \end{align*} |
where
(a)
(b)
(c)
(d)
Indeed, by the definition of
\begin{align*} {\bar \gamma}(t+\tau)-{\bar \gamma}(t) = {\bar \gamma}(t+\tau)-y = \int_t^{t+\tau}\Big(\dot{\gamma}(s)+\frac{x-y}{\tau}\Big)\, ds = \gamma(t+\tau)-y, \end{align*} |
and this gives (a). Moreover, by (a), and by the definition of
\begin{align*} \Big|{\bar \gamma}(s)-\gamma(s)\Big|\leq\Big|y-x+\int_t^s (\dot{\bar \gamma}(\sigma)- \dot{\gamma}(\sigma)) \, d\sigma\Big| = \Big|y-x+ \int_t^{s}\frac{x-y}{\tau} \, d\sigma\Big|\leq |y-x| \end{align*} |
and so (c) holds. Since
\begin{align*} &|{\bar \gamma}(s)-x_0|\leq|{\bar \gamma}(s)-y|+|y-x_0|\leq\left|\int_t^s \dot{{\bar \gamma}}(\sigma)\, d\sigma\right|+r\leq \int_t^s \ \Big|\dot{\gamma}(\sigma)+\frac{x-y}{\tau}\Big|\, d\sigma+r\\ &\leq \int_t^s \Big[ |\dot{\gamma}(\sigma)|+ \frac{|x-y|}{\tau}\Big]\, d\sigma+r \leq L^\star (s-t)+\frac{|x-y|}{\tau}(s-t)+r\leq L^\star\tau +|x-y|+r. \end{align*} |
Recalling that
\begin{equation*} |{\bar \gamma}(s)-x_0|\leq \frac{|x-y|}{2}+|x-y|+r\leq 4r. \end{equation*} |
Therefore,
Now, owing to the dynamic programming principle, by (a) one has that
\begin{equation} u(t, y)\leq \int_t^{t+\tau} f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))\, ds + u(t+\tau, \gamma(t+\tau)). \end{equation} | (4.2) |
Since
\begin{equation*} u(t, y)\leq u(t, x) +\int_t^{t+\tau} \Big[f(s, {\bar \gamma}(s), \dot{\bar \gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))\Big] \, ds. \end{equation*} |
By (3.7), (3.8), and the definition of
\begin{align*} &|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, {\bar \gamma}(s), \dot{\gamma}(s))|+|f(s, {\bar \gamma}(s), \dot{\gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq \int_0^1 |\langle D_vf(s, {\bar \gamma}(s), \lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)), \dot{{\bar \gamma}}(s)-\dot{\gamma}(s)\rangle|\, d\lambda\\ & + \int_0^1|D_xf(s, \lambda{\bar \gamma}(s)+(1-\lambda)\gamma(s), \dot{\gamma}(s)), {\bar \gamma}(s)-\gamma(s)\rangle|\, d\lambda\\ &\leq C(\mu, M)|\dot{{\bar \gamma}}(s)-\dot{\gamma}(s)|\int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda \\ &+ C(\mu, M)|{\bar \gamma}(s)-\gamma(s)|\int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda. \end{align*} |
By Theorem 3.1 one has that
\int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda\leq 1+4L^\star, | (4.3) |
\int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda\leq 1+(L^\star)^2. | (4.4) |
Using (4.3), (4.4), and (c), by the definition of
\begin{equation}\label{bl1} |f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\leq C(\mu, M)(1+4L^\star)\frac{|x-y|}{\tau}+C(\mu, M)(1+(L^\star)^2)|x-y|, \end{equation} | (4.5) |
for a.e.
\begin{align*} &u(t, y)\leq u(t, x) + C(\mu, M)(1+4L^\star)\int_t^{t+\tau}\frac{|x-y|}{\tau} \, ds+ C(\mu, M)(1+(L^\star)^2)\int_t^{t+\tau} |x-y|\, ds\\ &\leq u(t, x) + C(\mu, M)(1+4L^\star)\big|x-y\big|+\tau C(\mu, M)(1+(L^\star)^2)\big|x-y\big|\leq u(t, x)+C_{L^\star}|x-y| \end{align*} |
where
In order to prove Lipschitz continuity in time, let
\begin{equation}\label{3e} |u(t_2, x)-u(t_1, x)|\leq |u(t_2, x)-u(t_2, \gamma(t_2))|+|u(t_2, \gamma(t_2))-u(t_1, x)|. \end{equation} | (4.6) |
The first term on the right-side of (4.6) can be estimated using the Lipschitz continuity in space of
\begin{equation}\label{4} |u(t_2, x)-u(t_2, \gamma(t_2))|\leq C_{L^\star}|x-\gamma(t_2)| \leq C_{L^\star}\int_{t_1}^{t_2}|\dot{\gamma}(s)|\, ds\leq L^\star C_{L^\star} (t_2-t_1). \end{equation} | (4.7) |
We only have to estimate the second term on the right-side of (4.6). By the dynamic programming principle, (3.9), and the assumptions on
\begin{align}\label{5} |u(t_2, \gamma(t_2))-u(t_1, x)|& = \Big |\int_{t_1}^{t_2}f(s, \gamma(s), \dot{\gamma}(s))\, ds\Big|\leq \int_{t_1}^{t_2}|f(s, \gamma(s), \dot{\gamma}(s))|\, ds\\ &\leq \int_{t_1}^{t_2} \Big[C(\mu, M)+ 4\mu |\dot{\gamma}(s)|^2\Big]\, ds\leq \Big[C(\mu, M)+4\mu L^\star\Big] (t_2-t_1)\nonumber \end{align} | (4.8) |
Using (4.7) and (4.8) to bound the right-hand side of (4.6), we obtain that
In this section we want to apply Theorem 3.1 to a mean field game (MFG) problem with state constraints. Such a problem was studied in [11], where the existence and uniqueness of constrained equilibria was obtained under fairly general assumptions on the data. Here, we will apply our necessary conditions to deduce the existence of more regular equilibria than those constructed in [11], assuming the data
Assumptions
Let
(D1) For all
\begin{align} |F(x, m_1)-F(x, m_2)|+ |G(x, m_1)-G(x, m_2)| \leq \kappa d_1(m_1, m_2), \label{lf} \end{align} | (4.9) |
for any
(D2) For all
\begin{equation*} |D_xF(x, m)|+|D_xG(x, m)|\leq \kappa, \ \ \ \ \forall \ x\in U, \ \forall \ m\in \mathcal{P}(\overline{\Omega}). \end{equation*} |
Let
(L0)
\begin{equation}\label{bml} |L(x, 0)|+|D_xL(x, 0)|+|D_vL(x, 0)|\leq M, \ \ \ \ \forall \ x\in U. \end{equation} | (4.10) |
(L1)
\frac{I}{\mu} \leq D^2_{vv}L(x, v)\leq I\mu, | (4.11) |
||D_{vx}^2L(x, v)||\leq \mu(1+|v|), | (4.12) |
for all
Remark 4.1. (ⅰ)
(ⅱ) Arguing as Lemma 3.1 we deduce that there exists a positive constant
|D_xL(x, v)|\leq C(\mu, M)(1+|v|^2), | (4.13) |
|D_vL(x, v)|\leq C(\mu, M)(1+|v|), | (4.14) |
\frac{|v|^2}{4\mu}-C(\mu, M) \leq L(x, v)\leq 4\mu|v|^2 +C(\mu, M), | (4.15) |
for all
Let
H(t, x, p) = H_L(x, p)-F(x, m(t)), \ \ \ \forall\ (t, x, p)\in[0, T]\times U\times\mathbb{R}^n, |
where
\begin{equation*} H_L(x, p) = \sup\limits_{v\in\mathbb{R}^n}\Big\{-\langle p, v\rangle-L(x, v)\Big\}, \ \ \ \ \ \forall\ (x, p)\in U\times\mathbb{R}^n. \end{equation*} |
The assumptions on
1.
\begin{equation} |H_L(x, 0)|+|D_xH_L(x, 0)|+|D_pH_L(x, 0)|\leq M', \ \ \ \ \forall x\in U. \end{equation} | (4.16) |
2.
\frac{I}{\mu}\leq D_{pp}H_L(x, p)\leq I\mu, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \forall \ (x, p)\in U\times\mathbb{R}^n, | (4.17) |
||D_{px}^2 H_L(x, p)||\leq C(\mu, M')(1+|p|), \ \ \ \forall \ (x, p)\in U\times \mathbb{R}^n, | (4.18) |
where
For any
\begin{equation*} e_t(\gamma) = \gamma(t), \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} |
For any
\begin{equation*} m^\eta(t) = e_t\sharp\eta \ \ \ \ \forall t\in [0, T]. \end{equation*} |
Remark 4.2. We observe that for any
(ⅰ)
(ⅱ) Let
For any fixed
\begin{equation*} J_\eta [\gamma] = \int_0^T \Big[L(\gamma(t), \dot \gamma(t))+ F(\gamma(t), m^\eta(t))\Big]\ dt + G(\gamma(T), m^\eta(T)), \ \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} |
For all
\begin{equation*} \Gamma^\eta[x] = \Big\{ \gamma\in\Gamma[x]:J_\eta[\gamma] = \min\limits_{\Gamma[x]} J_\eta\Big\}. \end{equation*} |
It is shown in [11] that, for every
Definition 4.1. Let
\begin{equation*} supp(\eta)\subseteq \bigcup\limits_{x\in\overline{\Omega}} \Gamma^\eta[x]. \end{equation*} |
Let
Definition 4.2. Let
\begin{equation*} \mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma') = \{\eta\in\mathcal{P}_{m_0}(\Gamma'): m^\eta \in {\rm Lip}(0, T;\mathcal{P}(\overline{\Omega}))\}. \end{equation*} |
Remark 4.3. We note that
j(x)(t) = x \ \ \ \ \forall t \in[0, T]. |
Then,
\eta : = j\sharp m_0 |
is a Borel probability measure on
In order to show that
\begin{equation*} e_0 \sharp \eta (B) = \eta (e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i \eta_i(e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i e_0 \sharp \eta_i(B) = \sum\limits_{i = 1}^{2} \lambda_i m_0(B) = m_0 (B). \end{equation*} |
So,
In the next result, we apply Theorem 3.1 to prove a useful property of minimizers of
Proposition 4.2. Let
\begin{equation}\label{l0} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation} | (4.19) |
where
Proof. Let
\begin{equation*} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation*} |
where
We denote by
\begin{equation}\label{tgamma} \Gamma_{L_0} = \{\gamma \in \Gamma:||\dot\gamma||_\infty\leq L_0\}. \end{equation} | (4.20) |
Lemma 4.1. Let
Proof. Arguing as in Remark 4.3, we obtain that
Let
\begin{equation*} d_1(m^\eta(t_2), m^\eta(t_1)) = \sup\Big\{\int_{\overline{\Omega}} \phi(x)(m^\eta(t_2, \, dx)-m^\eta(t_1, \, dx))\ \Big|\ \phi:\overline{\Omega}\rightarrow\mathbb{R}\ \ \mbox{is 1-Lipschitz} \Big\}. \end{equation*} |
Since
\begin{align*} &\int_{\overline\Omega} \phi(x)\, (m^\eta(t_2, dx)-m^\eta(t_1, dx)) = \int_{\Gamma}\Big[ \phi(e_{t_2}(\gamma))-\phi(e_{t_1}(\gamma))\Big] \, d\eta(\gamma)\\ & = \int_{\Gamma} \Big[\phi(\gamma(t_2))-\phi(\gamma(t_1))\Big] \, d\eta(\gamma) \leq \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma). \end{align*} |
Since
\begin{align*} \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma)\leq L_0\int_{\Gamma} |t_2-t_1|\, d\eta(\gamma) = L_0|t_2-t_1| \end{align*} |
and so
In the next result, we deduce the existence of more regular equilibria than those constructed in [11].
Theorem 4.1. Let
Proof. First of all, we recall that for any
*We say that
\begin{equation}\label{dise} \begin{cases} \eta(d\gamma) = \int_{\overline{\Omega}} \eta_x(d\gamma) m_0(\, dx), \\ supp(\eta_x)\subset \Gamma[x] \ \ m_0-\mbox{a.e.} \ x\in \overline{\Omega} \end{cases} \end{equation} | (4.21) |
(see, e.g., [2, Theorem 5.3.1]). Proceeding as in [11], we introduce the set-valued map
E:\mathcal{P}_{m_0}(\Gamma)\rightrightarrows \mathcal{P}_{m_0}(\Gamma), |
by defining, for any
\begin{equation}\label{ein} E(\eta) = \Big\{ \widehat{\eta}\in\mathcal{P}_{m_0}(\Gamma): supp(\widehat{\eta}_x)\subseteq \Gamma^\eta[x] \ \ m_0-\mbox{a.e.} \ x \in \overline{\Omega}\Big\}. \end{equation} | (4.22) |
We recall that, by [11, Lemma 3.6], the map
Now, we consider the restriction
E_0:\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}) \rightrightarrows \mathcal{P}_{m_0}(\Gamma), \ \ \ E_0(\eta) = E(\eta) \ \ \forall \eta \in\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}). |
We will show that the set-valued map
\begin{equation}\label{lin} E_0(\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}))\subseteq \mathcal{P}^{{\rm Lip}}_{m_0}(\Gamma_{L_0}). \end{equation} | (4.23) |
Indeed, let
\Gamma^\eta[x]\subset \Gamma_{L_0} \ \ \ \forall x \in \overline{\Omega}, |
and by definition of
supp(\widehat{\eta})\subset \Gamma_{L_0}. |
So,
Since
We recall the definition of a mild solution of the constrained MFG problem, given in [11].
Definition 4.3. We say that
(i)
(ii) u is given by
\begin{equation}\label{v} u(t, x) = \inf\limits_{\tiny\begin{array}{c} \gamma\in \Gamma\\ \gamma(t) = x \end{array}} \left\{\int_t^T \left[L(\gamma(s), \dot \gamma(s))+ F(\gamma(s), m(s))\right]\ ds + G(\gamma(T), m(T))\right\}, \end{equation} | (4.24) |
for
Theorem 4.2. Let
(i)
(ii)
The question of the Lipschitz continuity up to the boundary of the value function under state constraints was addressed in [28] and [34], for stationary problems, and in a very large literature that has been published since. We refer to the survey paper [20] for references.
Proof. Let
Remark 4.4. Recall that
\int_{\overline{\Omega}} (F(x, m_1)-F(x, m_2))d(m_1-m_2)(x)\ \geq\ 0, | (4.25) |
for any
Suppose that
In this Appendix we prove Lemma 2.1. The only case which needs to be analyzed is when
d_\Omega( y)-d_\Omega( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \text{for any} \ y \ \text{such that}\ | y- x|\leq \epsilon, | (5.1) |
for some constant
\begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle D{b_\Omega}( x), y- x\rangle\geq {b_\Omega}( y)-{b_\Omega}( x)-\langle D{b_\Omega}( x), y- x\rangle \geq C | y- x|^2. \end{equation*} |
This shows that
\begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle \lambda D {b_\Omega}( x), y- x\rangle\geq \lambda\left( d_\Omega( y)-d_\Omega( x)-\langle D {b_\Omega}( x), y- x\rangle\right) \ \ \ \forall \lambda \in[0, 1], \end{equation*} |
we further obtain the inclusion
\begin{equation*} D{b_\Omega}( x)[0, 1]\subset\partial d_\Omega( x). \end{equation*} |
Next, in order to show the reverse inclusion, let
{b_\Omega}( y)-{b_\Omega}( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \ | y- x|\leq \epsilon. | (5.2) |
Since
\begin{equation}\label{p2} {b_\Omega}( y)-{b_\Omega}( x)\leq\langle D{b_\Omega}( x), y- x\rangle +C| y- x|^2 \end{equation} | (5.3) |
for some constant
\begin{equation*} \left\langle D{b_\Omega}( x)-p, \frac{ y- x}{| y- x|}\right\rangle\geq C| y- x|. \end{equation*} |
Hence, passing to the limit for
\begin{equation*} \langle D{b_\Omega}( x)-p, v\rangle \geq 0, \ \ \ \ \forall v\in T_{\Omega^c}( x), \end{equation*} |
where
D{b_\Omega}( x)-p = \lambda v( x), |
where
p = (1-\lambda) D{b_\Omega}( x). |
Now, we prove that
\begin{equation*} 0 = d_\Omega( y)\geq (1-\lambda)\langle D {b_\Omega}( x), y- x\rangle + C| y- x|^2. \end{equation*} |
Hence,
\begin{equation*} (1-\lambda)\left\langle D{b_\Omega}( x), \frac{ y- x}{| y- x|}\right\rangle\leq -C| y- x|. \end{equation*} |
Passing to the limit for
\begin{equation*} (1-\lambda)\left\langle D {b_\Omega}( x), w\right\rangle \leq 0, \ \ \ \ \ \forall w\in T_{\overline{\Omega}}( x), \end{equation*} |
where
This work was partly supported by the University of Rome Tor Vergata (Consolidate the Foundations 2015) and by the Istituto Nazionale di Alta Matematica "F. Severi" (GNAMPA 2016 Research Projects). The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The second author is grateful to the Universitá Italo Francese (Vinci Project 2015).
The authors declare no conflict of interest.
[1] | G. J. Abiodun, R. Maharaj, P. Witbooi, et al., Modelling the influence of temperature and rainfall on the population dynamics of anopheles arabiensis, Malaria J., 15 (2016), 364. |
[2] | Y. A. Afrane, B.W. Lawson, A. K. Githeko, et al., Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of anopheles gambiae (Diptera: Culicidae) in western Kenya highlands, J. Med. Entomol., 42 (2005), 974–980. |
[3] | F. B. Agusto, A. B. Gumel and P. E. Parham, Qualitative assessment of the role of temperature variation on malaria transmission dynamics, J. Biol. Syst., 24 (2015), 1–34. |
[4] | N. Bacaer, Approximation of the basic reproduction number Ro for vector-borne diseases with a periodic vector population, B. Math. Biol., 69 (2007), 1067–1091. |
[5] | L. M. Beck-Johnson, W. A. Nelson, K. P. Paaijmans, et al., The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk, Roy. Soc. Open Sci., 4 (2017). Available from :http://dx.doi.org/10.1098/rsos.160969. |
[6] | J. I. Blanford, S. Blanford, R. G. Crane, et al., Implications of temperature variation for malaria parasite development across Africa, Sci. Rep., 3 (2013), 1300. |
[7] | P. Cailly, A. Tran, T. Balenghien, et al., A climate-driven abundance model to assess mosquito control strategies, Ecol. Model., 227 (2012), 7–17. |
[8] | C. Christiansen-Jucht, K. Erguler, C. Y. Shek, et al., Modelling anopheles gambiae s.s. population dynamics with temperature and age-dependent survival, Int. J. Env. Res. Pub. He., 12 (2015), 5975–6005. |
[9] | O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. |
[10] | Y. Dumont and F. Chiroleu, Vector control for the chikungunya disease, Math. Biosci. Eng., 7 (2010), 105–111. |
[11] | A. Egbendewe-Mondzozo, M. Musumba, B. A. McCarl, et al., Climate change and vector-borne diseases: an economic impact analysis of malaria in Africa, Int. J. Env. Res. Pub. He., 8 (2011), 913–930. |
[12] | S. M. Garba, A. B. Gumel and M. R. A. Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11–25. |
[13] | A. B. Gumel, Causes of backward bifurcation in some epidemiological models, J. Math. Anal. Appl., 395 (2012), 355–365. |
[14] | V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications, Academic Press, New York, 1969. |
[15] | J. La Salle and S. Lefschetz, The stability of dynamical systems, SIAM, Philadephia, 1976. |
[16] | Y. Lou and X. Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 2023–2044. |
[17] | P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. |
[18] | E. A. Mordecai, Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol. Lett., 16 (2013), 22–30. |
[19] | E. T. Ngarakana-Gwasira, C. P. Bhunu, M. Masocha, et al., Assessing the role of climate change in malaria transmission in Africa, Malaria Res. Treat., 1 (2016), 1–7. |
[20] | C. N. Ngonghala, S. Y. Del Valle, R. Zhao, et al., Quantifying the impact of decay in bed-net efficacy on malaria transmission, J. Theor. Biol., 363 (2014), 247–261. |
[21] | H. S. Ngowo, E. W. Kaindoa, J. Matthiopoulos, et al., Variations in household microclimate affect outdoor-biting behaviour of malaria vectors, Wellcome Open Research, 2 (2017). |
[22] | A. M. Niger and A. B. Gumel, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, Diff. Equa. Dyn. Syst., 16 (2008), 251–287. |
[23] | K. Okuneye and A. B. Gumel, Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics, Math. Biosci., 287 (2017), 72–92. |
[24] | K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate, P. Natl. Acad. Sci. USA, 106 (2009), 13844–13849. |
[25] | K. P. Paaijmans, S. Blanford, A. S. Bell, et al., Influence of climate on malaria transmission depends on daily temperature variation, P. Natl. Acad. Sci. USA, 107 (2010), 15135–15139. |
[26] | K. P. Paaijmans, S. S. Imbahale, M. B. Thomas, et al., Relevant microclimate for determining thedevelopment rate of malaria mosquitoes and possible implications of climate change, Malaria J., 9 (2010), 196. |
[27] | K. P. Paaijmans and M. B. Thomas, The influence of mosquito resting behaviour and associated microclimate for malaria risk, Malaria J., 10 (2011), 183. |
[28] | K. P. Paaijmans and M. B. Thomas, Relevant temperatures in mosquito and malaria biology, In: Ecology of parasite-vector interactions, Wageningen Academic Publishers, 2013. |
[29] | P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission, Environ. Health Persp., 118 (2010), 620–626. |
[30] | D. J. Rogers and S. E. Randolph, Advances in Parasitology, Elsevier Academic Inc, San Diego, 2006. |
[31] | M. A. Safi, M. Imran and A. B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theor. Biosci., 131 (2012), 19–30. |
[32] | L. L. M. Shapiro, S. A. Whitehead and M. B. Thomas, Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria, PLoS Biol., 15 (2017), e2003489. |
[33] | P. Singh, Y. Yadav, S. Saraswat, et al., Intricacies of using temperature of different niches for assessing impact on malaria transmission, Indian J. Med. Res., 144 (2016), 67–75. |
[34] | H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Am. Math. Soc., 41, 1995. |
[35] | S. Thomas, S. Ravishankaran, N. A. J. Amala Justin, et al., Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of plasmodium vivax and plasmodium falciparum: a study from a malaria endemic urban setting, Chennai in India, Malaria J., 17 (2018), 201. |
[36] | P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[37] | W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equations, 20 (2008), 699–717. |
[38] | Malaria Report, from World Health Organization, 2010. Available from: www.who.int/ mediacenter/factsheets/fs094/en/. |
[39] | World Malaria Day, Report of the World Health Organisation (WHO), 2018. Available from: www.who.int/malaria/media/world-malaria-day-2018/en/. |
[40] | H. Zhang, P. Georgescu and A. S. Hassan, Mathematical insights and integrated strategies for the control of Aedes aegypti mosquito, Appl. Math. Comput., 273 (2016), 1059–1089. |
[41] | F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. |
[42] | X. Q. Zhao, Dynamical systems in population biology, Springer, New York, 2003. |
[43] | X. Q. Zhao, Uniform persistence and periodic co-existence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Q., 3 (1995), 473–495. |
1. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic mean field games with control on the acceleration, 2020, 27, 1021-9722, 10.1007/s00030-020-00634-y | |
2. | Philip Jameson Graber, Charafeddine Mouzouni, On Mean Field Games models for exhaustible commodities trade, 2020, 26, 1292-8119, 11, 10.1051/cocv/2019008 | |
3. | Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1 | |
4. | Siting Liu, Matthew Jacobs, Wuchen Li, Levon Nurbekyan, Stanley J. Osher, Computational Methods for First-Order Nonlocal Mean Field Games with Applications, 2021, 59, 0036-1429, 2639, 10.1137/20M1334668 | |
5. | Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the PDE system, 2021, 60, 0944-2669, 10.1007/s00526-021-01936-4 | |
6. | J. Frédéric Bonnans, Justina Gianatti, Laurent Pfeiffer, A Lagrangian Approach for Aggregative Mean Field Games of Controls with Mixed and Final Constraints, 2023, 61, 0363-0129, 105, 10.1137/21M1407720 | |
7. | Rossana Capuani, Antonio Marigonda, Marta Mogentale, 2022, Chapter 34, 978-3-030-97548-7, 297, 10.1007/978-3-030-97549-4_34 | |
8. | Piermarco Cannarsa, Wei Cheng, Cristian Mendico, Kaizhi Wang, Weak KAM Approach to First-Order Mean Field Games with State Constraints, 2021, 1040-7294, 10.1007/s10884-021-10071-9 | |
9. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Multipopulation Minimal-Time Mean Field Games, 2022, 60, 0363-0129, 1942, 10.1137/21M1407306 | |
10. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Nonsmooth mean field games with state constraints, 2022, 28, 1292-8119, 74, 10.1051/cocv/2022069 | |
11. | Rossana Capuani, Antonio Marigonda, Constrained Mean Field Games Equilibria as Fixed Point of Random Lifting of Set-Valued Maps, 2022, 55, 24058963, 180, 10.1016/j.ifacol.2022.11.049 | |
12. | Saeed Sadeghi Arjmand, Guilherme Mazanti, 2021, On the characterization of equilibria of nonsmooth minimal-time mean field games with state constraints, 978-1-6654-3659-5, 5300, 10.1109/CDC45484.2021.9683104 | |
13. | Samuel Daudin, Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space, 2023, 00217824, 10.1016/j.matpur.2023.05.002 | |
14. | Rossana Capuani, Antonio Marigonda, Michele Ricciardi, Random Lift of Set Valued Maps and Applications to Multiagent Dynamics, 2023, 31, 1877-0533, 10.1007/s11228-023-00693-0 | |
15. | Michael Hintermüller, Thomas M. Surowiec, Mike Theiß, On a Differential Generalized Nash Equilibrium Problem with Mean Field Interaction, 2024, 34, 1052-6234, 2821, 10.1137/22M1489952 | |
16. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic Mean Field Games on Networks: A Lagrangian Approach, 2024, 56, 0036-1410, 6689, 10.1137/23M1615073 | |
17. | Guilherme Mazanti, A note on existence and asymptotic behavior of Lagrangian equilibria for first-order optimal-exit mean field games, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024064 | |
18. | P. Jameson Graber, Remarks on potential mean field games, 2025, 12, 2522-0144, 10.1007/s40687-024-00494-3 | |
19. | Michele Ricciardi, Mauro Rosestolato, Mean field games incorporating carryover effects: optimizing advertising models, 2024, 1593-8883, 10.1007/s10203-024-00500-x |