Finite element approximation of a population spatial adaptation model

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : 35K55, 65M60, 92D25.

  • In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a modification of their convective term to take account for the notion of spatial adaptation of populations. After describing the model, in which a time non-local drift term is considered, we propose a numerical discretization in terms of a mass-preserving time semi-implicit finite element method. Finally, we provied the results of some biologically inspired numerical experiments showing qualitative differences between the original model of [18] and the model proposed in this article.

    Citation: Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637

    Related Papers:

    [1] Alina Chertock, Pierre Degond, Sophie Hecht, Jean-Paul Vincent . Incompressible limit of a continuum model of tissue growth with segregation for two cell populations. Mathematical Biosciences and Engineering, 2019, 16(5): 5804-5835. doi: 10.3934/mbe.2019290
    [2] Maher Alwuthaynani, Raluca Eftimie, Dumitru Trucu . Inverse problem approaches for mutation laws in heterogeneous tumours with local and nonlocal dynamics. Mathematical Biosciences and Engineering, 2022, 19(4): 3720-3747. doi: 10.3934/mbe.2022171
    [3] Cornel M. Murea, H. G. E. Hentschel . A finite element method for growth in biological development. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339
    [4] Moritz Schäfer, Peter Heidrich, Thomas Götz . Modelling the spatial spread of COVID-19 in a German district using a diffusion model. Mathematical Biosciences and Engineering, 2023, 20(12): 21246-21266. doi: 10.3934/mbe.2023940
    [5] Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561
    [6] Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215
    [7] Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada . Numerical solution of a spatio-temporal predator-prey model with infected prey. Mathematical Biosciences and Engineering, 2019, 16(1): 438-473. doi: 10.3934/mbe.2019021
    [8] Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti . Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences and Engineering, 2007, 4(3): 523-530. doi: 10.3934/mbe.2007.4.523
    [9] Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura . Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences and Engineering, 2010, 7(2): 237-258. doi: 10.3934/mbe.2010.7.237
    [10] Hongyong Zhao, Qianjin Zhang, Linhe Zhu . The spatial dynamics of a zebrafish model with cross-diffusions. Mathematical Biosciences and Engineering, 2017, 14(4): 1035-1054. doi: 10.3934/mbe.2017054
  • In [18], Sighesada, Kawasaki and Teramoto presented a system of partial differential equations for modeling spatial segregation of interacting species. Apart from competitive Lotka-Volterra (reaction) and population pressure (cross-diffusion) terms, a convective term modeling the populations attraction to more favorable environmental regions was included. In this article, we study numerically a modification of their convective term to take account for the notion of spatial adaptation of populations. After describing the model, in which a time non-local drift term is considered, we propose a numerical discretization in terms of a mass-preserving time semi-implicit finite element method. Finally, we provied the results of some biologically inspired numerical experiments showing qualitative differences between the original model of [18] and the model proposed in this article.


    [1] Numer. Math., 98 (2004), 195-221.
    [2] SIAM J. Math. Anal., 36 (2004), 301-322.
    [3] Commun. Part. Diff. Eqs., 32 (2007), 127-148.
    [4] Math. Z., 194 (1987), 375-396.
    [5] Math. Nachr., 195 (1998), 77-114.
    [6] Appl. Math. Comput., 218 (2011), 4587-4594.
    [7] Comput. Math. Appl., 64 (2012), 1927-1936.
    [8] RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A. Mat., 95 (2001), 281-295.
    [9] Numer. Math., 93 (2003), 655-673.
    [10] Banach Center Publ., 63 (2004), 209-216.
    [11] SIAM J. Math. Anal., 35 (2003), 561-578.
    [12] Nonlinear Anal., 12 (2011), 2826-2838.
    [13] Appl. Numer. Math., 59 (2009), 1059-1074.
    [14] Nonlinear Analysis TMA, 8 (1984), 1121-1144.
    [15] J. Diff. Eqs., 131 (1996), 79-131.
    [16] Adv. Math., Beijing, 25 (1996), 283-284.
    [17] J. Math. Biol., 9 (1980), 49-64.
    [18] J. Theor. Biol., 79 (1979), 83-99.
    [19] Nonlinear Analysis TMA, 21 (1993), 603-630.
  • This article has been cited by:

    1. Vernard S. Fennell, M. Yashar S. Kalani, Gursant Atwal, Nikolay L. Martirosyan, Robert F. Spetzler, Biology of Saccular Cerebral Aneurysms: A Review of Current Understanding and Future Directions, 2016, 3, 2296-875X, 10.3389/fsurg.2016.00043
    2. B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, 2015, 70, 08981221, 1948, 10.1016/j.camwa.2015.08.019
    3. Mitalip M. Mamytov, Ulanbek U. Kozubaev, Efficiency study of microsurgical treatment of cerebral aneurysms: reducing the risk of disability, 2024, 23, 2413-2942, 134, 10.17816/socm635950
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2833) PDF downloads(500) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog