A new firing paradigm for integrate and fire stochastic neuronal models

  • Received: 01 May 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : 60J99, 92Bxx.

  • A new definition of firing time is given in the framework of Integrate and Fire neuronal models. The classical absorption condition at the threshold is relaxed and the firing time is defined as the first time the membrane potential process lies above a fixed depolarisation level for a sufficiently long time. The mathematical properties of the new firing time are investigated both for the Perfect Integrator and the Leaky Integrator. In the latter case, a simulation study is presented to complete the analysis where analytical results are not yet achieved.

    Citation: Roberta Sirovich, Luisa Testa. A new firing paradigm for integrate and fire stochastic neuronal models[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010

    Related Papers:

    [1] Kenji Itao, Fumiya Omata, Yoshitaka Nishikawa, Tetsuro Oda, Toshiharu Sasaki, Cherri Zhang, John Solomon Maninang, Takayuki Yamaguchi . Threshold phenomena with respect to the initiation of depopulation in a simple model of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2019, 16(5): 5931-5946. doi: 10.3934/mbe.2019297
    [2] Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao . Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159
    [3] Yong Li, Meng Huang, Li Peng . A multi-group model for estimating the transmission rate of hand, foot and mouth disease in mainland China. Mathematical Biosciences and Engineering, 2019, 16(4): 2305-2321. doi: 10.3934/mbe.2019115
    [4] Lei Shi, Hongyong Zhao, Daiyong Wu . Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China. Mathematical Biosciences and Engineering, 2019, 16(1): 474-500. doi: 10.3934/mbe.2019022
    [5] Chenxi Dai, ZhiWang, Weiming Wang, Yongqin Li, Kaifa Wang . Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease inWenzhou, China. Mathematical Biosciences and Engineering, 2019, 16(4): 2168-2188. doi: 10.3934/mbe.2019106
    [6] Muhammad Z. Ul Haque, Peng Du, Leo K. Cheng . A combined functional dorsal nerve model of the foot. Mathematical Biosciences and Engineering, 2022, 19(9): 9321-9334. doi: 10.3934/mbe.2022433
    [7] Chayu Yang, Jin Wang . A mathematical model for frogeye leaf spot epidemics in soybean. Mathematical Biosciences and Engineering, 2024, 21(1): 1144-1166. doi: 10.3934/mbe.2024048
    [8] Sheree L. Arpin, J. M. Cushing . Modeling frequency-dependent selection with an application to cichlid fish. Mathematical Biosciences and Engineering, 2008, 5(4): 889-903. doi: 10.3934/mbe.2008.5.889
    [9] Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075
    [10] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
  • A new definition of firing time is given in the framework of Integrate and Fire neuronal models. The classical absorption condition at the threshold is relaxed and the firing time is defined as the first time the membrane potential process lies above a fixed depolarisation level for a sufficiently long time. The mathematical properties of the new firing time are investigated both for the Perfect Integrator and the Leaky Integrator. In the latter case, a simulation study is presented to complete the analysis where analytical results are not yet achieved.


    [1] Queueing Systems, 10 (1992), 5-87.
    [2] ORSA Journal on Computing, 7 (1995), 36-43.
    [3] Stochastic Models, 21 (2005), 967-980.
    [4] Ann. Appl. Probab., 12 (2002), 1071-1095.
    [5] Scandinavian Journal of Statistics, 40 (2013), 274-293.
    [6] Physical Review E, 78 (2008), 011918.
    [7] Physical Review E, 81 (2010), 031916.
    [8] Mathematical Biosciences and Engineering, 11 (2014), 189-201.
    [9] Advances in Applied Probability, 19 (1987), 784-800.
    [10] Biological Cybernetics, 95 (2006), 1-19.
    [11] Biological Cybernetics, 95 (2006), 97-112.
    [12] Journal of Theoretical Biology, 350 (2014), 81-89.
    [13] Frontiers in Neural Circuits, 8 (2014), p11.
    [14] Advances in Applied Probabability, 29 (1997), 165-184.
    [15] Probabilistic Engineering Mechanics, 23 (2008), 170-179.
    [16] Physical Review. E (3), 71 (2005), 011907, 9pp.
    [17] Physical Review E, 73 (2006), 061910, 9pp.
    [18] Journal of Mathematical Biology, 67 (2013), 453-481.
    [19] Bulletin of Mathematical Biology, 75 (2013), 629-648.
    [20] Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 129 (1999), 57-75.
    [21] Biophysical Journal, 4 (1964), 41-68.
    [22] Cambridge University Press, 2002.
    [23] Annals of Probability, 7 (1979), 244-266.
    [24] Advances in Applied Probability, 21 (1989), 20-36.
    [25] Neural Computation, 23 (2011), 1743-1767.
    [26] Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.
    [27] Frontiers in Computational Neuroscience, 7 (2013), p131.
    [28] Biological Cybernetics, 73 (1995), 209-221.
    [29] in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, Univ. California Press, Berkeley, Calif., 1972, 225-239.
    [30] in Advances in Neural Information Processing Systems 18 (eds. Y. Weiss, B. Sch\"olkopf and J. Platt), MIT Press, 2006, 595-602.
    [31] Springer-Verlag, 1991.
    [32] Frontiers in Computational Neuroscience, 3 (2009), p9.
    [33] Brain Research, 1536 (2013), 97-106.
    [34] Mathematical Bioscience, 67 (1983), 247-260.
    [35] Biological Cybernetics, 99 (2008), 253-262.
    [36] Neural Computation, 16 (2004), 477-489.
    [37] Journal of Computational Neuroscence, 21 (2006), 211-223.
    [38] Courier Corporation, 1972.
    [39] Physical Review E, 72 (2005), 021911, 21pp.
    [40] Springer-Verlag, 2003.
    [41] Bernoulli, 9 (2003), 1-24.
    [42] Springer-Verlag, Berlin-New York, 1977.
    [43] Biological Cybernetics, 35 (1979), 1-9.
    [44] Physical Review E, 76 (2007), 021919.
    [45] Cambridge University Press, Cambridge, 2000.
    [46] in Stochastic Biomathematical Models, Lecture Notes in Math., 2058, Springer, Heidelberg, 2013, 99-148.
    [47] Mathematical Bioscience, 39 (1978), 53-70.
    [48] Lifetime Data Analysis, 21 (2015), 331-352.
    [49] Physica D: Nonlinear Phenomena, 288 (2014), 45-52.
    [50] Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988.
    [51] Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988.
    [52] The Journal of Neuroscience, 24 (2004), 3060-3069.
  • This article has been cited by:

    1. Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa, Backward Bifurcation and Optimal Control Analysis of a Trypanosoma brucei rhodesiense Model, 2019, 7, 2227-7390, 971, 10.3390/math7100971
    2. Tinashe B. Gashirai, Senelani D. Hove-Musekwa, Steady Mushayabasa, Dynamical analysis of a fractional-order foot-and-mouth disease model, 2021, 15, 2008-1359, 65, 10.1007/s40096-020-00372-3
    3. Tinashe B. Gashirai, Senelani D. Musekwa-Hove, Paride O. Lolika, Steady Mushayabasa, Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission, 2020, 132, 09600779, 109568, 10.1016/j.chaos.2019.109568
    4. Junyuan Yang, Xiaoyan Wang, Kelu Li, Temporal-spatial analysis of a foot-and-mouth disease model with spatial diffusion and vaccination, 2022, 9, 2297-1769, 10.3389/fvets.2022.952382
    5. Gui-Quan Sun, Hong-Tao Zhang, Li-Li Chang, Zhen Jin, Hao Wang, Shigui Ruan, On the Dynamics of a Diffusive Foot-and-Mouth Disease Model with Nonlocal Infections, 2022, 82, 0036-1399, 1587, 10.1137/21M1412992
    6. Xiaoyan Wang, Hongquan Sun, Junyuan Yang, Temporal-spatial analysis of an age-space structured foot-and-mouth disease model with Dirichlet boundary condition, 2021, 31, 1054-1500, 053120, 10.1063/5.0048282
    7. Ivan Sseguya, Joseph Y.T. Mugisha, Betty Nannyonga, Outbreak and control of Foot and Mouth Disease within and across adjacent districts—A mathematical perspective, 2022, 6, 26667207, 100074, 10.1016/j.rico.2021.100074
    8. Junyuan Yang, Meijia Gong, Gui-Quan Sun, Asymptotical profiles of an age-structured foot-and-mouth disease with nonlocal diffusion on a spatially heterogeneous environment, 2023, 377, 00220396, 71, 10.1016/j.jde.2023.09.001
    9. Umanga Gunasekera, Kimberly VanderWaal, Jonathan Arzt, Andres Perez, Foot-and-mouth disease reproduction number: a scoping review, 2025, 12, 2297-1769, 10.3389/fvets.2025.1576974
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2829) PDF downloads(457) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog