[1]
|
Dias MI, Ferreira IC, Barreiro MF (2015) Microencapsulation of bioactives for food applications. Food Funct 6: 1035–1052. doi: 10.1039/C4FO01175A
|
[2]
|
Vandamme TF, Gbassi GK, Nguyen TTL, et al. (2015) Microencapsulating Bioactives for Food. Benefic Microbes Fermented Funct Foods 255–271.
|
[3]
|
Zhang C, Li X, Liu YN, et al. (2015) Utilization of Microcapsule Technology in Foods. J Nanosci Nanotechnol 15: 9330–9340. doi: 10.1166/jnn.2015.9226
|
[4]
|
Quek S, Chen Q, Shi J (2016) Microencapsulation of Food Ingredients for Functional Foods. Funct Food Ingredients Nutraceuticals 13: 267–318.
|
[5]
|
Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17: 272–283. doi: 10.1016/j.tifs.2005.12.011
|
[6]
|
Santiago LG, Castro GR (2016) Novel technologies for the encapsulation of bioactive food compounds. Curr Opin Food Sci 7: 78–85. doi: 10.1016/j.cofs.2016.01.006
|
[7]
|
Castro-Rosas J, Ferreira-Grosso CR, Gómez-Aldapa CA, et al. (2017) Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food-A review. Food Res Int 102: 575–587. doi: 10.1016/j.foodres.2017.09.054
|
[8]
|
Nazzaro F, Orlando P, Fratianni F, et al. (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23: 182–186. doi: 10.1016/j.copbio.2011.10.001
|
[9]
|
Özkan G, Bilek SE (2014) Microencapsulation of natural food colourants. Int J Nutr Food Sci 3: 145–156.
|
[10]
|
Desobry S, Debeaufort F (2015) Encapsulation of flavors, nutraceuticals, and antibacterials. Handb Encapsulation Controlled Release 801–832.
|
[11]
|
Donsì F, Sessa M, Ferrari G (2015) Encapsulation of Bioactive Compounds. Handb Encapsulation Controlled Release 765–799.
|
[12]
|
Edwards-Lévy F, Munin-César A (2015) Encapsulation of Polyphenolics. Handb Encapsulation Controlled Release 741–763.
|
[13]
|
Martin MJ, Lara-Villoslada F, Ruiz MA, et al. (2015) Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Sci Emerging Technol 27: 15–25. doi: 10.1016/j.ifset.2014.09.010
|
[14]
|
Bakry AM, Abbas S, Ali B, et al. (2016) Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr Rev Food Sci Food Saf 15: 143–182. doi: 10.1111/1541-4337.12179
|
[15]
|
Li Y (2015) Nano-Microencapsulation Technology and Applications in Fortified and Functional Foods. Funct Food Ingredients Nutraceuticals 13: 319–371.
|
[16]
|
De SSL, Madalena DA, Pinheiro AC, et al. (2017) Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv Colloid Interface Sci 243: 23–45. doi: 10.1016/j.cis.2017.02.010
|
[17]
|
Sanguansri L, Augustin MA (2016) Microencapsulation and Delivery of Omega-3 Fatty Acids. Funct Food Ingredients Nutraceuticals 13: 373–407.
|
[18]
|
Gunasekaran S, Ko S (2014) Rationales of nano- and microencapsulation for food ingredients. John Wiley & Sons Ltd 43–64.
|
[19]
|
Ré M, Santana M, dAvila M (2015) Encapsulation Technologies for Modifying Food Performance. Handb Encapsulation Controlled Release 643–684.
|
[20]
|
Paulo F, Santos L (2017) Design of experiments for microencapsulation applications: A review. Mater Sci Eng C Mater Biol Appl 2017: 1327–1340.
|
[21]
|
Wandrey C, Bartkowiak A, Harding SE, (2010) Materials for Encapsulation, In: Zuidam NJ, Nedovic V, Editors, Encapsulation Technologies for Active Food Ingredients and Food Processing, New York: Springer New York 31–100.
|
[22]
|
Đorđević V, Balanč B, Belščak-Cvitanović A, et al. (2015) Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev 7: 452–490. doi: 10.1007/s12393-014-9106-7
|
[23]
|
Nedovic V, Kalusevic A, Manojlovic V, et al. (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1: 1806–1815. doi: 10.1016/j.profoo.2011.09.265
|
[24]
|
Vos PD, Faas MM, Spasojevic M, et al. (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20: 292–302. doi: 10.1016/j.idairyj.2009.11.008
|
[25]
|
Fang Z, Bhandari B (2012) Encapsulation Techniques for Food Ingredient Systems. Food Mater Sci Eng 320–348.
|
[26]
|
Augustin MA, Sanguansri L (2012) Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements. Encapsulation Technol Delivery Syst Food Ingredients Nutraceuticals 2012: 19–48.
|
[27]
|
Mcclements DJ (2012) Requirements for food ingredient and nutraceutical delivery systems. Encapsulation Technol Delivery Syst Food Ingredients Nutraceuticals 3–18.
|
[28]
|
Vasisht N (2014) Selection of materials for microencapsulation. Elsevier Inc 173–180.
|
[29]
|
Karaca AC, Low NH, Nickerson MT (2015) Potential use of plant proteins in the microencapsulation of lipophilic materials in foods. Trends Food Sci Technol 42: 5–12. doi: 10.1016/j.tifs.2014.11.002
|
[30]
|
Meng Y, Cloutier S, (2014) Gelatin and Other Proteins for Microencapsulation, In: Microencapsulation in the Food Industry, San Diego: Academic Press, 227–239.
|
[31]
|
Tavares GM, Croguennec T, Carvalho AF, et al. (2014) Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci Technol 37: 5–20. doi: 10.1016/j.tifs.2014.02.008
|
[32]
|
Sharif HR, Williams PA, Sharif MK, et al. (2017) Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants-A review. Food Hydrocolloids 76: 2–16.
|
[33]
|
Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15: 73–83. doi: 10.1016/j.cocis.2009.11.002
|
[34]
|
Nesterenko A, Alric I, Silvestre F, et al. (2013) Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Ind Crops Prod 42: 469–479. doi: 10.1016/j.indcrop.2012.06.035
|
[35]
|
Nesterenko A, Alric I, Violleau F, et al. (2014) The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids 41: 95–102. doi: 10.1016/j.foodhyd.2014.03.017
|
[36]
|
Augustin MA, Oliver CM, (2014) Use of Milk Proteins for Encapsulation of Food Ingredients, In: Microencapsulation in the Food Industry, San Diego: Academic Press, 211–226.
|
[37]
|
Liu F, Chen Z, Tang CH (2014) Microencapsulation properties of protein isolates from three selected Phaseolus legumes in comparison with soy protein isolate. LWT-Food Sci Technol 55: 74–82. doi: 10.1016/j.lwt.2013.09.008
|
[38]
|
Karaca AC, Nickerson M, Low NH (2013) Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chem 139: 448–457. doi: 10.1016/j.foodchem.2013.01.040
|
[39]
|
Veraverbeke WS, Delcour JA (2002) Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. Crit Rev Food Sci Nutr 42: 179–208. doi: 10.1080/10408690290825510
|
[40]
|
Ahmedna M, Prinyawiwatkul W, Rao RM (1999) Solubilized wheat protein isolate: Functional properties and potential food applications. J Agric Food Chem 47: 1340–1345. doi: 10.1021/jf981098s
|
[41]
|
Ducel V, Richard J, Popineau Y, et al. (2005) Rheological Interfacial Properties of Plant Protein-Arabic Gum Coacervates at the Oil-Water Interface. Biomacromolecules 6: 790–796. doi: 10.1021/bm0494601
|
[42]
|
Boire A, Menut P, Morela MH, et al. (2013) Phase behaviour of a wheat protein isolate. Soft Matter 9: 11417–11426. doi: 10.1039/c3sm51489g
|
[43]
|
O'Sullivan J, Park M, Beevers J (2016) The effect of ultrasound upon the physicochemical and emulsifying properties of wheat and soy protein isolates. J Cereal Sci 69: 77–84. doi: 10.1016/j.jcs.2016.02.013
|
[44]
|
Iwami K, Hattori M, Nakatani S, et al. (2006) Spray-Dried Gliadin Powders Inclusive of Linoleic Acid (Microcapsules): Their Preservability, Digestibility and Application to Bread Making. Agric Biol Chemy 51: 3301–3307.
|
[45]
|
Ezpeleta I, Irache JM, Stainmesse S, et al. (1996) Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. Int J Pharm 131: 191–200. doi: 10.1016/0378-5173(95)04338-1
|
[46]
|
Mauguet MC, Legrand J, Brujes L, et al. (2002) Gliadin matrices for microencapsulation processes by simple coacervation method. J Microencapsulation 19: 377–384. doi: 10.1080/02652040110105346
|
[47]
|
Davidov-Pardo G, Joye IJ, Mcclements DJ (2015) Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocolloids 45: 309–316.
|
[48]
|
Joye IJ, Davidov-Pardo G, Mcclements DJ (2015) Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids 49: 127–134.
|
[49]
|
Joye IJ, Nelis VA, Mcclements DJ (2015) Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems. Food Hydrocolloids 44: 86–93. doi: 10.1016/j.foodhyd.2014.09.008
|
[50]
|
Yu JY, Lee WC (1997) Microencapsulation of pyrrolnitrin from Pseudomonas cepacia using gluten and casein. J Ferment Bioeng 84: 444–448. doi: 10.1016/S0922-338X(97)82005-3
|
[51]
|
Rosenberg M, Rosenberg Y, Frenkel L (2016) Microencapsulation of model oil in wall matrices consisting of SPI and maltodextrins. AIMS Agric Food 1: 33–51. doi: 10.3934/agrfood.2016.1.33
|
[52]
|
Patton S, Huston GE (1986) A method for isolation of milk fat globules. Lipids 21: 170–174. doi: 10.1007/BF02534441
|
[53]
|
Cano-Ruiz ME, Richter RL (1997) Effect of Homogenization Pressure on the Milk Fat Globule Membrane Proteins. J Dairy Sci 80: 2732–2739. doi: 10.3168/jds.S0022-0302(97)76235-0
|
[54]
|
Hooi R, Barbano DM, Bradley RL, et al. (2004) Chemical and Physical Methods, In: Arnold EA, Editor, Standard Methods for the Examination of Dairy Products, American Public Health Association.
|
[55]
|
Sharma R, Singh H, Taylor MW (1996) Composition and Structure of Fat Globule Surface Layers in Recombined Milk. J Food Sci 61: 28–32. doi: 10.1111/j.1365-2621.1996.tb14719.x
|
[56]
|
Young SL, Sarda X, Rosenberg M (1993) Microencapsulating Properties of Whey Proteins. 1. Microencapsulation of Anhydrous Milk Fat. J Dairy Sci76: 2868–2877.
|
[57]
|
Gharsallaoui A, Roudaut G, Chambin O, et al. (2007) Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int 40: 1107–1121. doi: 10.1016/j.foodres.2007.07.004
|
[58]
|
Jafari SM, Assadpoor E, He Y, et al. (2008) Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technol 26: 816–835. doi: 10.1080/07373930802135972
|
[59]
|
Sheu TY, Rosenberg M (1995) Microencapsulation by Spray Drying Ethyl Caprylate in Whey Protein and Carbohydrate Wall Systems. J Food Sci 60: 98–103. doi: 10.1111/j.1365-2621.1995.tb05615.x
|
[60]
|
Mcclements DJ, Decker EA, Weiss J (2007) Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. J Food Sci 72: R109–R124. doi: 10.1111/j.1750-3841.2007.00507.x
|
[61]
|
Young SL, Sarda X, Rosenberg M (1993) Microencapsulating Properties of Whey Proteins. 2. Combination of Whey Proteins with Carbohydrates. J Dairy Sci 76: 2878–2885.
|
[62]
|
Walstra PWJ, Geurts TJ, (2006) Homogenization, In: Dairy Science and Technology, 2 Eds., Florida: CRC Press, 279–296.
|
[63]
|
Mcclements DJ (2004) Protein-stabilized emulsions. Curr Opin Colloid Interface Sci 9: 305–313. doi: 10.1016/j.cocis.2004.09.003
|
[64]
|
Sheu TY, Rosenberg M (1998) Microstructure of Microcapsules Consisting of Whey Proteins and Carbohydrates. J Food Sci 63: 491–494. doi: 10.1111/j.1365-2621.1998.tb15770.x
|
[65]
|
Rosenberg M, Talmon Y, Kopelman IJ (1988) The Microstructure of Spray-Dried Microcapsules. Food Microstruct 7: 15–23.
|
[66]
|
Moreau DL, Rosenberg M, Miller MM, et al. (1993) Microstructure and Fat Extractability in Microcapsules Based on Whey Proteins or Mixtures of Whey Proteins and Lactose. Food Struct 12: 457–468.
|
[67]
|
Rosenberg M, Young SL, Brooker BE, et al. (1993) Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat-structure evaluation. Food Struct 12: 31–41.
|
[68]
|
Jafari SM, Assadpoor E, He YH, et al. (2008) Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol 26: 816–835. doi: 10.1080/07373930802135972
|
[69]
|
Vega C, Roos YH (2006) Invited review: Spray-dried dairy and dairy-like-emulsions compositional considerations. J Dairy Sci 89: 383–401. doi: 10.3168/jds.S0022-0302(06)72103-8
|