Research article Special Issues

Numerical schemes for a class of nonlocal conservation laws: a general approach

  • Received: 16 February 2023 Revised: 25 March 2023 Accepted: 09 April 2023 Published: 15 May 2023
  • In this work we present a rather general approach to approximate the solutions of nonlocal conservation laws. In a first step, we approximate the nonlocal term with an appropriate quadrature rule applied to the spatial discretization. Then, we apply a numerical flux function on the reduced problem. We present explicit conditions which such a numerical flux function needs to fulfill. These conditions guarantee the convergence to the weak entropy solution of the considered model class. Numerical examples validate our theoretical results and demonstrate that the approach can be applied to other nonlocal problems.

    Citation: Jan Friedrich, Sanjibanee Sudha, Samala Rathan. Numerical schemes for a class of nonlocal conservation laws: a general approach[J]. Networks and Heterogeneous Media, 2023, 18(3): 1335-1354. doi: 10.3934/nhm.2023058

    Related Papers:

  • In this work we present a rather general approach to approximate the solutions of nonlocal conservation laws. In a first step, we approximate the nonlocal term with an appropriate quadrature rule applied to the spatial discretization. Then, we apply a numerical flux function on the reduced problem. We present explicit conditions which such a numerical flux function needs to fulfill. These conditions guarantee the convergence to the weak entropy solution of the considered model class. Numerical examples validate our theoretical results and demonstrate that the approach can be applied to other nonlocal problems.



    加载中


    [1] E. Abreu, R. De la cruz, J. Juajibioy, W. Lambert, Lagrangian-eulerian approach for nonlocal conservation laws, J Dyn Differ Equ, (2022), 1–47.
    [2] A. Aggarwal, R. M. Colombo, P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963–983. https://doi.org/10.1137/140975255 doi: 10.1137/140975255
    [3] P. Amorim, R. M. Colombo, A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), 19–37. https://doi.org/10.1051/m2an/2014023 doi: 10.1051/m2an/2014023
    [4] F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885. https://doi.org/10.1088/0951-7715/24/3/008 doi: 10.1088/0951-7715/24/3/008
    [5] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217–241. https://doi.org/10.1007/s00211-015-0717-6 doi: 10.1007/s00211-015-0717-6
    [6] R. Bürger, H. Contreras, L. Villada, A hilliges-weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux, Netw. Heterog. Media., 18 (2023), 664–693. https://doi.org/10.3934/nhm.2023029 doi: 10.3934/nhm.2023029
    [7] C. Chalons, P. Goatin, L. M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288–A305. https://doi.org/10.1137/16M110825X doi: 10.1137/16M110825X
    [8] F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich, O. Kolb, A non-local traffic flow model for 1-to-1 junctions, Eur J. Appl. Math., 31 (2020), 1029–1049. https://doi.org/10.1017/S095679251900038X doi: 10.1017/S095679251900038X
    [9] F. A. Chiarello, P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM Math. Model. Numer. Anal., 52 (2018), 163–180. https://doi.org/10.1051/m2an/2017066 doi: 10.1051/m2an/2017066
    [10] F. A. Chiarello, P. Goatin, Non-local multi-class traffic flow models, Netw. Heterog. Media., 14 (2019), 371–387. https://doi.org/10.3934/nhm.2019015 doi: 10.3934/nhm.2019015
    [11] F. A. Chiarello, P. Goatin, L. M. Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, Comput. Appl. Math., 39 (2020), 1–22. https://doi.org/10.1007/s40314-019-0964-8 doi: 10.1007/s40314-019-0964-8
    [12] M. Colombo, G. Crippa, M. Graff, L. V. Spinolo, On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, Esaim Math Model Numer Anal, 55 (2021), 2705–2723. https://doi.org/10.1051/m2an/2021073 doi: 10.1051/m2an/2021073
    [13] R. M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023. https://doi.org/10.1142/S0218202511500230 doi: 10.1142/S0218202511500230
    [14] M. G. Crandall, A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), 1–21. https://doi.org/10.1090/S0025-5718-1980-0551288-3 doi: 10.1090/S0025-5718-1980-0551288-3
    [15] C. D'Apice, S. Göttlich, M. Herty, B. Piccoli, Modeling, simulation, and optimization of supply chains, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2010.
    [16] B. Engquist, S. Osher, One-sided difference approximations for nonlinear conservation laws, Math Comput, 36 (1981), 321–351. https://doi.org/10.1090/S0025-5718-1981-0606500-X doi: 10.1090/S0025-5718-1981-0606500-X
    [17] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal., 7 (2000), 713–1020. https://doi.org/10.1016/S1570-8659(00)07005-8
    [18] J. Friedrich, S. Göttlich, M. Osztfalk, Network models for nonlocal traffic flow, Esaim Math Model Numer Anal, 56 (2022), 213–235. https://doi.org/10.1051/m2an/2022002 doi: 10.1051/m2an/2022002
    [19] J. Friedrich, S. Göttlich, E. Rossi, Nonlocal approaches for multilane traffic models, Commun. Math. Sci., 19 (2021), 2291–2317. https://doi.org/10.4310/CMS.2021.v19.n8.a10 doi: 10.4310/CMS.2021.v19.n8.a10
    [20] J. Friedrich, O. Kolb, Maximum principle satisfying CWENO schemes for nonlocal conservation laws, SIAM J. Sci. Comput., 41 (2019), A973–A988. https://doi.org/10.1137/18M1175586 doi: 10.1137/18M1175586
    [21] J. Friedrich, O. Kolb, S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media., 13 (2018), 531–547. https://doi.org/10.3934/nhm.2018024 doi: 10.3934/nhm.2018024
    [22] P. Goatin, S. Scialanga, Well-posedness and finite volume approximations of the lwr traffic flow model with non-local velocity, Netw. Heterog. Media., 11 (2016), 107–121. https://doi.org/10.3934/nhm.2016.11.107 doi: 10.3934/nhm.2016.11.107
    [23] E. Godlewski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, New York: Springer-Verlag, 1996.
    [24] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959), 271–306.
    [25] S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295–3313. https://doi.org/10.1016/j.apm.2013.11.039 doi: 10.1016/j.apm.2013.11.039
    [26] H. Holden, N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Berlin: Springer, 2015.
    [27] K. Huang, Q. Du, Asymptotically compatibility of a class of numerical schemes for a nonlocal traffic flow model, arXiv: 2301.00803, [Preprint], (2023) [cited 2023 May 15 ]. Available from: https://doi.org/10.48550/arXiv.2301.00803
    [28] A. Keimer, L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equ., 263 (2017), 4023–4069. https://doi.org/10.1016/j.jde.2017.05.015 doi: 10.1016/j.jde.2017.05.015
    [29] A. Keimer, L. Pflug, Nonlocal balance laws–an overview over recent results, Handbook of Numerical Analysis, Amsterdam: Elsevier, 2023.
    [30] A. Keimer, L. Pflug, M. Spinola, Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18–55. https://doi.org/10.1016/j.jmaa.2018.05.013 doi: 10.1016/j.jmaa.2018.05.013
    [31] A. Keimer, L. Pflug, M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., 50 (2018), 6271–6306. https://doi.org/10.1137/18M119817X doi: 10.1137/18M119817X
    [32] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228–255. https://doi.org/10.1130/0016-7606(1970)81[255:DOMSTI]2.0.CO;2 doi: 10.1130/0016-7606(1970)81[255:DOMSTI]2.0.CO;2
    [33] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7 (1954), 159–193. https://doi.org/10.1002/cpa.3160070112 doi: 10.1002/cpa.3160070112
    [34] R. J. LeVeque, Numerical methods for conservation laws, Berlin: Springer, 1992.
    [35] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge: Cambridge university press, 2002.
    [36] E. Rossi, J. Weißen, P. Goatin, S. Göttlich, Well-posedness of a non-local model for material flow on conveyor belts, Esaim Math Model Numer Anal, 54 (2020), 679–704. https://doi.org/10.1051/m2an/2019062 doi: 10.1051/m2an/2019062
    [37] J. W. Thomas, Numerical partial differential equations: finite difference methods, Berlin: Springer Science & Business Media, 2013.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(940) PDF downloads(83) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog