We present a local sensivity analysis for the kinetic Kuramoto equation with random inputs in a large coupling regime. In our proposed random kinetic Kuramoto equation (in short, RKKE), the random inputs are encoded in the coupling strength. For the deterministic case, it is well known that the kinetic Kuramoto equation exhibits asymptotic phase concentration for well-prepared initial data in the large coupling regime. To see a response of the system to the random inputs, we provide propagation of regularity, local-in-time stability estimates for the variations of the random kinetic density function in random parameter space. For identical oscillators with the same natural frequencies, we introduce a Lyapunov functional measuring the phase concentration, and provide a local sensitivity analysis for the functional.
Citation: Seung-Yeal Ha, Shi Jin, Jinwook Jung. A local sensitivity analysis for the kinetic Kuramoto equation with random inputs[J]. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013
[1] | Seung-Yeal Ha, Shi Jin, Jinwook Jung . A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013 |
[2] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[3] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[4] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[5] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[6] | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787 |
[7] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[8] | Hirotada Honda . Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12(1): 25-57. doi: 10.3934/nhm.2017002 |
[9] | Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030 |
[10] | Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001 |
We present a local sensivity analysis for the kinetic Kuramoto equation with random inputs in a large coupling regime. In our proposed random kinetic Kuramoto equation (in short, RKKE), the random inputs are encoded in the coupling strength. For the deterministic case, it is well known that the kinetic Kuramoto equation exhibits asymptotic phase concentration for well-prepared initial data in the large coupling regime. To see a response of the system to the random inputs, we provide propagation of regularity, local-in-time stability estimates for the variations of the random kinetic density function in random parameter space. For identical oscillators with the same natural frequencies, we introduce a Lyapunov functional measuring the phase concentration, and provide a local sensitivity analysis for the functional.
Collective behaviors of oscillatory complex systems are ubiquitous in our nature, e.g., flashing of fireflies, chorusing of crickets, synchronous firing of cardiac pacemaker and metabolic synchrony in yeast cell suspension [1,7,15,32,33] etc. Aforementioned collective patterns come down to synchronization phenomena. The jargon ``synchronization" represents the adjustment of rhythms in an ensemble of weakly coupled oscillators. Compared to long human history, a rigorous treatment for synchronization started only several decades ago in the pioneering works by Kuramoto and Winfree in [25,26,37]. They introduced simple, continuous dynamical systems for weakly coupled oscillators, and explained how collective behaviors in such simple models can emerge from initial configurations. Recently, emergent dynamics of coupled oscillators on networks has become an active, emerging research field in diverse disciplines such as biology, nonlinear dynamics, statistical physics and sociology. After Kuramoto and Winfree's seminal works, many phenomenological models have been used in the study of synchronization. Among them, we are mainly interested in the prototype model, namely the Kuramoto model. In order to fix the idea, let
$ ∂tθi(t,z)=νi+1NN∑j=1κij(z)sin(θj(t,z)−θi(t,z)),t>0, $
|
(1) |
where
$ \kappa_{ij} = \kappa_{ji}, \quad 1 \leq i, j \leq N. $ |
For the deterministic case where all randomness were quenched, i.e.,
$ \nu_i = \mbox{constant}, \quad \kappa_{ij}(z) = \kappa_{ij}, $ |
emergent dynamics of (1) has been extensively studied in [2,6,10,11,12,13,14,20,23,28,29,30,34,35,36] where the complete synchronization and stability conditions were proposed. The pathwise well-posedness of (1) can be done using the standard Cauchy-Lipschitz theory. In authors' recent work [18], a local sensitivity analysis for (1) has been addressed. In this paper, we are interested in the correpsonding mean-field equation which can effectively describe the dynamics of system (1) with
$ ∂tf+∂θ(ω[f]f)=0,(θ,ν,z)∈T×R×Ω,t>0,ω[f](t,θ,ν,z)=ν−κ(z)∫T×Rsin(θ−θ∗)f(t,θ∗,ν∗,z)dν∗dθ∗. $
|
(2) |
When the extrinsic randomness in
In this paper, we address a local sensitivity analysis for (2) to see the effect of random parameter in
The main results of this paper are two-fold. First, we present pathwise well-posedness and stability estimate of the RKKE by establishing a priori estimates (see Theorem 3.2, Theorem 3.3 and Theorem 3.4): for
$ sup0≤t<T‖∂lzf(t,z)‖Wk−l,∞θ,ν≤C(z,T),sup0≤t<T‖f(t)‖Hlπ(L∞θ,ν)≤C(T)‖f0‖Hlπ(L∞θ,ν),sup0≤t<Tk∑l=0‖∂lz(f−˜f)(t,z)‖Wk−l,∞≤C(z,T)k∑l=0‖∂lz(f0−˜f0)(z)‖Wk−l,∞, $
|
where
Second, we consider identical oscillator with
$ ∂tρ+∂θ(˜ω[ρ]ρ)=0,(θ,ν,z)∈T×R×Ω,t>0,˜ω[ρ](t,θ,z)=−κ(z)∫2π0sin(θ−θ∗)ρ(t,θ∗,z)dθ∗. $
|
Now, we introduce a Lyapunov functional
$ L[ρ](t,z):=∫T|θ−θρ,c(t,z)|2ρ(t,θ,z)dθ,θρ,c(t,z):=∫Tθρ(t,θ,z)dθ. $
|
(3) |
Note that the zero convergence of
$ L[ρ](t,z)≥ε2∫|θ−θρ,c(t,z)|>ερdθ=ε2P[θ−θρ,c(t,z)|>ε]. $
|
This implies
$ \lim\limits_{t \to \infty} \mathbb{P}[ |\theta - \theta_{\rho,c}(t,z)| > \varepsilon] \leq \frac{1}{\varepsilon^2} \lim\limits_{t \to \infty} {\mathcal L}[\rho](t,z) = 0. $ |
Under suitable conditions on initial data and system parameters, we will show that there exists random functions
$ {\mathcal L}[|\partial_z \rho|](t,z) \le C(z) e^{-\Lambda(z) t}, \quad t \geq 0. $ |
(see Theorem 4.3 for details). However, higher-order sensitivity analysis for
The rest of this paper is organized as follows. In Section 2, we briefly introduce the random kinetic Kuramoto equation and discuss its basic properties. In Section 3, we study a pathwise well-posedness of the RKKE by providing a priori estimates such as boundedness of
Gallery of Notation: Throughout the paper, we use the following notation:
Let
$ \mathbb{E}[\varphi] : = \int_\Omega \varphi(z) \pi(z) dz, $ |
and a weighted
$ L_\pi^2(\Omega) : = \{ y:\; \Omega \to \mathbb{R}\; |\; \int_{\Omega} |y(z)|^2 \pi(z) dz < \infty \}, $ |
with an inner product and norm:
$ \langle y_1, y_2 \rangle_{L^2_\pi(\Omega)} : = \int_{\Omega} y_1(z) y_2(z) \pi(z) dz, \qquad \|y\|_{L^2_\pi(\Omega)} : = \Big( \int_{\Omega} |y(z)|^2 \pi(z) dz \Big)^{\frac{1}{2}}. $ |
For
$ \|y\|_{H^l_\pi(\Omega)} : = \Big( \sum\limits_{\ell = 0}^{k} \|\partial_z^{\ell} y\|^2_{L^2_\pi(\Omega)} \Big)^{\frac{1}{2}}, \quad k \geq 1, \qquad \|y\|_{H_\pi^0(\Omega)} : = \|y\|_{L_\pi^2(\Omega)}. $ |
Let
$ ‖h(z)‖Wk,∞θ,ν:=∑0≤α+β≤k‖∂αθ∂βνh(z)‖L∞(T×R),‖h‖2Hlπ(L∞θ,ν):=∑|α|≤l‖∂αzh‖2L2π(Ω;L∞(T×R)). $
|
Moreover, as long as there is no confusion, we suppress
$ \|y\|_{L_z^2} : = \|y\|_{L^2_\pi(\Omega)}, \quad \|y\|_{H_z^k} : = \|y\|_{H^k_\pi(\Omega)}. $ |
In this section, we briefly introduce the RKKE and study its basic properties. Let
$ ∂tθi(t,z)=νi+1NN∑j=1κij(z)sin(θj(t,z)−θi(t,z)),t>0,1≤i≤N. $
|
(4) |
Here, the coupling matrix
Next, we consider a situation where the number of oscillators tend to infinity and the coupling strengths
$ N→∞,κij(z)=κ(z),1≤i,j≤N. $
|
(5) |
For the derivation of the mean-field model associated with (1) and (5), we refer to [27,31] for details. It is more convenient to rewrite system (4) with (5) as a dynamical system on the extended phase space
$ {∂tθi(t,z)=νi+κ(z)NN∑j=1sin(θj(t,z)−θi(t,z)),t>0,∂tνi=0. $
|
(6) |
Next, we return to the pathwise mean-field limit of (6) as
$ ∂tf+∂θ(ω[f]f)=0,(θ,ν)∈T×R,t>0,ω[f](t,θ,ν,z)=ν−κ(z)∫T×Rsin(θ−θ∗)f(t,θ∗,ν∗,z)dν∗dθ∗ $
|
(7) |
subject to initial data:
$ f(0,θ,ν,z)=f0(θ,ν,z). $
|
(8) |
Here the initial datum
$ f0(θ,ν,z)=f0(θ+2π,ν,z),(ν,z)∈R×Ω,∫Tf0(θ,ν,z)dθ=g(ν,z),∫T×Rf0(θ,ν,z)dνdθ=1. $
|
(9) |
Lemma 2.1. Let
$ f(t, 0, \nu, z) = f(t, 2\pi, \nu, z), \quad (\nu, z) \in \mathbb R \times \Omega,\; \; t > 0. $ |
Then, for each
$ (i)∫T×Rf(t,θ,ν,z)dνdθ=∫T×Rf0(θ,ν,z)dνdθ.(ii)∫T×Rνf(t,θ,ν,z)dνdθ=∫T×Rνf0(θ,ν,z)dνdθ. $
|
Proof. We multiply
$ 0=∂t∫T×Rfdνdθ+∫T×R∂θ(ω[f]f)dνdθ=∂t∫T×Rfdνdθ,0=∂t∫T×Rνfdνdθ+∫T×Rν∂θ(ω[f]f)dνdθ=∂t∫T×Rνfdνdθ. $
|
Remark 1. Note that
$ f(t, \theta, \nu, z) = f(t, \theta + 2\pi, \nu, z), \quad \int_{ \mathbb T} f(t, \theta, \nu, z)d \theta = g(\nu), \quad \int_{ \mathbb T \times \mathbb R} f d\nu d\theta = 1. $ |
Since the
Lemma 2.2. Let
$ \sup\limits_{\theta \in \mathbb T} |f^0(\theta, \nu, z)| = 0, \quad for \ all\quad |\nu| \ge M(z), \quad for \ each\quad z \in \Omega. $ |
Then for each
$ \sup\limits_{\theta \in \mathbb T}|f(t,\theta, \nu, z)| = 0, \quad for \ all\quad |\nu| \ge M(z), \quad for \ each\quad z \in \Omega. $ |
Before we leave this section, we state a Grönwall-type lemma to be used in later sections.
Lemma 2.3. Let
$ y′≤−αy+Ce−βt,t>0,y(0)=y0, $
|
(10) |
where
$ y(t) \leq y^0 e^{-\alpha t} + \frac{C}{\alpha-\beta}(e^{-\beta t} - e^{-\alpha t}) $ |
Proof. We multiply (10) by
$ y(t)e^{\alpha t} \le y^0 + \frac{C}{\alpha-\beta}(e^{(\alpha-\beta)t} - 1). $ |
This yields the desired estimate.
In this section, we present a pathwise well-posedness of (2) and propagation of
For each
$ {∂tf+ω[f]∂θf=−(∂θω[f])f,l=0,∂t(∂lzf)+ω[f]∂θ(∂lzf)=−(∂θω[f])(∂lzf)−l∑r=1(lr)∂θ[(∂rzω[f])(∂l−rzf)]⏟L.O.T.,l≥1. $
|
(11) |
Note that the L.H.S. for
$ (\theta(t, z), \nu(t,z)) : = (\theta(t;0,\theta,\nu, z), \nu(t;0,\theta,\nu,z)) $ |
as a solution to (11):
$ {∂θ(s,z)∂s=ω[f](θ(s,z),ν(s,z)),∂ν(s,z)∂s=0,s>0,(θ(0,z),ν(0,z))=(θ,ν). $
|
(12) |
Now, we define the
$ Vl(t,z):=¯{ν∈R | supθ∈T|∂lzf(θ,ν,t,z)|≠0},D(Vl)(t,z):=sup{|ν1−ν2| | ν1, ν2∈Vl(t,z)}. $
|
(13) |
For
$ \mathcal{V}^0(t,z) = : \mathcal{V}(t,z) \quad \mbox{and} \quad D(\mathcal{V}^0)(t,z) = : D(\mathcal{V})(t,z). $ |
Note that the
$ \mathcal{V}^l(t,z) \subseteq \mathcal{V}(t,z) = \mathcal{V}(z) \quad \mbox{and} \quad D(\mathcal{V}^l)(t,z) \le D(\mathcal{V})(z) \quad l \geq 0,\; \; t \geq 0. $ |
In this subsection, we study the propagation of
$ \| h \|_{L^{\infty}} : = \| h \|_{L_{\theta, \nu}^{\infty}}, \qquad \| h \|_{W^{k,\infty}} : = \| h \|_{W_{\theta, \nu}^{k,\infty}}, $ |
and we denote a generic non-negative random function by
Proposition 1. For
$ \|f^0(z)\|_{W^{k,\infty}} < \infty, \quad D(\mathcal{V}(z)) < \infty, \quad for \ each\ \ \ \ \ z \in \Omega. $ |
Then, for
$ supt∈[0,T)‖f(t,z)‖Wk,∞≤C(z,T)‖f0(z)‖Wk,∞, $
|
(14) |
where
Proof. The existence and uniqueness of the solution can be found in [27]. So we only provide a priori estimate for the solution process
$ ∂t(∂αθ∂βνf)+∂α+1θ∂βν(ω[f]f)=0. $
|
(15) |
Next, we split our estimate into two parts
$ \alpha + \beta = 0, \quad 1 \leq \alpha + \beta \leq k. $ |
Let
● Case A
$ ∂tf+ω[f]∂θf=−∂θω[f]f. $
|
(16) |
We use the method of characteristics to obtain
$ f(t,θ(t,z),ν(t,z),z)=f0(θ,ν,z)−∫t0(∂θω[f]f)(s,θ(s,z),ν(s,z),z)ds. $
|
(17) |
Since
$ |\partial_\theta \omega[f](s, \theta(s,z), \nu(s,z), z)| \leq \kappa(z)\left( \int_{ \mathbb T \times \mathbb R} |\cos(\theta_* - \theta)| f(s, \theta_*,\nu_*,z) d\nu_* d\theta_* \right)\leq \kappa(z), $ |
it follows from (17) that
$ ‖f(t,z)‖L∞≤‖f0(z)‖L∞+κ(z)∫t0‖f(τ,z)‖L∞dτ. $
|
(18) |
● Case B
$ \beta = 0 \quad \mbox{and} \quad \beta \geq 1. $ |
● Case B-1 (
$ ∂t(∂αθf)+ω[f]∂θ(∂αθf)=−α+1∑μ=1(α+1μ)(∂μθω[f])(∂α+1−μθf)=:R1. $
|
(19) |
On the other hand, since
$ |\partial_\theta^\mu \omega[f]| \le \kappa(z) \int_{ \mathbb T \times \mathbb R} f(\theta_*,\nu_*,z)d\nu_*d\theta_* = \kappa(z), $ |
The R.H.S. of (19) can be estimated as
$ |R1|≤C(α,z)α+1∑μ=1‖∂α+1−μθf‖L∞≤C(α,z)‖f‖Wα,∞. $
|
(20) |
Now, we integrate relation (19) along the characteristics and use (20) to get
$ ‖∂αθf(t,z)‖L∞≤‖∂αθf0(z)‖L∞+C(α,z)∫t0‖f(τ,z)‖Wα,∞dτ. $
|
(21) |
$ ∂t(∂αθ∂βνf)+ω[f]∂θ(∂αθ∂βνf)+∑μ+λ≠0(α+1μ)(βλ)(∂μθ∂λνω[f])(∂α+1−μθ∂β−λνf)=0. $
|
(22) |
Since
$ \partial_\nu \omega[f] = 1, \quad \partial^{\lambda}_\nu \omega[f] = 0, \quad \lambda \geq 2, $ |
relation (22) can be simplified as
$ ∂t(∂αθ∂βνf)+ω[f]∂α+1θ∂βνf=−β∂α+1θ∂β−1νf−α+1∑μ=1(α+1μ)(∂μθω[f])(∂α+1−μθ∂βνf)=:R2. $
|
(23) |
We integrate the above relation along the characteristics and use the estimate
$ \Big| {\mathcal R}_2 \Big| \leq C(\alpha, \beta, z) \left( \|\partial_\theta^{\alpha+1}\partial_\nu^{\beta-1} f\|_{L^\infty} + \sum\limits_{\mu = 0}^{\alpha}\|\partial_\theta^\mu \partial_\nu^\beta f\|_{L^\infty}\right) \le C(\alpha, \beta, z)\|f\|_{W^{\alpha+\beta,\infty}} $ |
to obtain
$ ‖∂αθ∂βνf(t,z)‖L∞≤‖∂αθ∂βνf0(z)‖L∞+C(α,β,z)∫t0‖f(τ,z)‖Wα+β,∞dτ. $
|
(24) |
Therefore, we obtain relations (21) and (24), sum the resulting relation over all
$ \|f(t,z)\|_{W^{k,\infty}} \le \|f^0(z)\|_{W^{k,\infty}} + C(\alpha, \beta, z) \int_0^t \|f(\tau,z)\|_{W^{k,\infty}}d\tau. $ |
Then Grönwall's lemma yields the desired estimate (14).
Remark 2. Note that the Sobolev embedding theorem yields that for
Now, we provide a lemma regarding the estimates of the frequency
Lemma 3.1. For
$ \sum\limits_{l = 0}^k \left(\|\partial_z^l f(t,z)\|_{L^{\infty}} + \| \partial_z^l \tilde{f}(t,z) \|_{L^{\infty}}\right) < \infty, \quad D(\mathcal{V})(z) + D(\tilde{\mathcal{V}})(z) < \infty. $ |
Then, for
$ (i)|∂αθ∂kz(ω[f])(t,z)|≤C(z)k∑l=0‖∂lzf(t,z)‖L∞,(ii)|∂αθ∂kz(ω[f]−ω[˜f])(t,z)|≤C(z)k∑l=0‖∂lz(f−˜f)(t,z)‖L∞,(iii)∂νω[f]=1,∂ανω[f]=0,α≥2. $
|
Proof. We first recall the relation:
$ \omega[f](t,\theta, \nu, z) = \nu - \kappa(z) \int_{ \mathbb T \times \mathbb R} \sin(\theta-\theta_*) f(t, \theta_*, \nu_*, z) d\nu_* d\theta_*. $ |
(ⅰ) It follows from (2) that
$ |∂αθ∂kzω[f]|=|k∑l=0(kl)∂k−lzκ(z)∫T×R∂αθ{sin(θ−θ∗)}∂lzf(θ∗,ν∗,z)dθ∗dν∗|≤2πk∑l=0(kl)D(V)(z)|∂k−lzκ(z)|‖∂lzf‖L∞≤C(z)k∑l=0‖∂lzf‖L∞, $
|
where we used
$ C(z) : = 2^{k+1} \pi D(\mathcal{V})(z) \max\limits_{0 \leq m \leq k} |\partial_z^{m} \kappa(z)| . $ |
(ⅱ) Similar to (ⅰ), we have
$ |\partial_\theta^\alpha \partial_z^k (\omega[f] - \omega[\tilde{f}]) | \le C(z) \sum\limits_{l = 0}^k \|\partial_z^l (f-\tilde{f})\|_{L^\infty}, $ |
where
$ C(z) : = 2^{k+1} \pi \max \{ D(\mathcal{V})(z), D(\mathcal{{\tilde V}})(z) \} \max\limits_{0 \leq m \leq k} |\partial_z^{m} \kappa(z)|. $ |
(ⅲ) The third estimate follows from the defining relation of
Now, we are ready to provide well-posedness of the process
Theorem 3.2. For
$ \| \partial_z^l f^0(z) \|_{W^{k-l, \infty}} < \infty, \quad D(\mathcal{V})(z) < \infty. $ |
Then, there exists a unique
$ \sup\limits_{t \in [0,T)}\|\partial_z^l f(t,z)\|_{W^{k-l,\infty}} \le C(z,T), \quad for \ each\ z \in \Omega. $ |
Proof. Since the proof is lengthy and tedious, we postpone its detailed proof in Appendix A. Here we briefly explain why one has a lower
$ \partial_t (\partial_z f) + \omega[f] \partial_\theta (\partial_z f) = -(\partial_z \omega[f] )(\partial_\theta f) + \cdots. $ |
Since R.H.S. of the above relation has a term
$ \partial_t (\partial^2_z f) + \omega[f] \partial_\theta (\partial^2_z f) = -2 (\partial_z \omega[f]) \partial_\theta (\partial_z f) - (\partial_z^2 \omega[f]) (\partial_\theta f) + \cdots. $ |
Hence, the term
Next, we provide the boundedness of the solution process in
Theorem 3.3. For
$ \sum\limits_{l = 0}^k \sup\limits_{z \in \Omega} \| \partial_z^l f^0(z) \|_{W^{k-l, \infty}} < \infty, \quad \sup\limits_{z \in \Omega} D(\mathcal{V})(z) < \infty, \quad \sum\limits_{l = 0}^k \sup\limits_{z \in \Omega}|\partial_z^l \kappa (z)| < \infty. $ |
Then, for
$ \|f(t)\|_{H_\pi^k(L_{\theta,\nu}^\infty)} \le C(T) \|f^0\|_{H_\pi^k(L_{\theta,\nu}^\infty)}, \quad t \in (0,T). $ |
Proof. The proof is almost similar to that of Proposition 1. Thus, we briefly outline the proof here. By the same argument as in the proof of Proposition 1, we have
$ \sum\limits_{l = 0}^k \|\partial_z^l f(t,z)\|_{L^\infty} \le C(T) \sum\limits_{l = 0}^k \left( \|\partial_z^l f^0(z)\|_{L^\infty} + \int_0^t \|\partial_z^l f (\tau,z)\|_{L^\infty}d \tau \right). $ |
We use Grönwall's lemma to obtain
$ k∑l=0‖∂lzf(t,z)‖L∞≤C(T)k∑l=0‖∂lzf0(z)‖L∞. $
|
(25) |
Finally, we square both sides in (25), multiply by
$ \|f(t)\|_{H_\pi^k(L_{\theta,\nu}^\infty)}^2 \le C(T) \|f^0\|_{H_\pi^k(L_{\theta,\nu}^\infty)}^2. $ |
In this subsection, we provide a local-in-time
Proposition 2. For
$ \Big(\|f^0(z)\|_{W^{k+1,\infty}} + \|{\tilde f}^0(z)\|_{W^{k+1,\infty}} \Big) < \infty, \qquad \left( D(\mathcal{V})(z) + D(\mathcal{{\tilde V}})(z) \right) < \infty. $ |
Then, there exists a positive random function
$ \sup\limits_{0 \leq t < T} \|(f- \tilde{f})(t,z)\|_{W^{k,\infty}} \le C(z,T) \|(f^0 - \tilde{f}^0)(z)\|_{W^{k,\infty}}. $ |
Proof. We use a similar argument as in Proposition 1 to derive the estimate
$ ‖∂αθ∂βν(f−˜f)‖L∞≤‖∂αθ∂βν(f0−˜f0)‖L∞+C(z,T)∫t0‖(f−˜f)(τ,z)‖Wα+β,∞dτ, $
|
(26) |
where
$ ‖(f−˜f)(t,z)‖Wk,∞≤‖(f0−˜f0)(z)‖Wk,∞+C(z,T)∫t0‖(f−˜f)(τ,z)‖Wk,∞dτ. $
|
(27) |
Therefore, we use Grönwall's inequality on (27) to obtain the desired estimate.
As an application of the arguments in Theorem 3.2 and Proposition 2, we get the local-in-time stability estimate of variations
Theorem 3.4. For
$ \sum\limits_{l = 0}^k \left(\|\partial_z^l f^0(z)\|_{W^{k-l+1,\infty}} + \| \partial_z^l \tilde{f}^0(z) \|_{W^{k-l+1,\infty}}\right) < \infty, \quad D(\mathcal{V})(z) + D(\tilde{\mathcal{V}})(z) < \infty, $ |
and let
$ \sup\limits_{0 \leq t < T} \sum\limits_{l = 0}^k \|\partial_z^l(f-\tilde{f})(t,z)\|_{W^{k-l, \infty}} \le C(z,T) \sum\limits_{l = 0}^k \|\partial_z^l (f^0-\tilde{f}^0)(z)\|_{W^{k-l,\infty}}. $ |
Proof. We basically follow the arguments in Theorem 3.2 and Proposition 2. Thus, we omit the details.
In this section, we provide a local sensitivity analysis for the phase concentration that emerges in (2). Since the kinetic equation (2) has been derived from the first-order model, it is not easy to see how frequency synchronization emerges from (2). However, for the kinetic Kuramoto equation with
$ f(\theta,\nu,t,z) : = \rho(\theta,t,z) \delta_0(\nu). $ |
We substitute this ansatz into (2) to obtain an equation for
$ ∂tρ+∂θ(˜ω[ρ]ρ)=0,θ∈T,t>0,˜ω[ρ](θ,t,z)=κ(z)∫2π0sin(θ∗−θ)ρ(θ∗,t,z)dθ∗, $
|
(28) |
Recall a Lyapunov functional
$ {\mathcal L}[\rho] : = \int_ \mathbb T |\theta - \theta_{\rho,c}|^2 \rho(\theta) d\theta, \qquad \theta_{\rho,c} : = \int_ \mathbb T \theta \rho(\theta) d\theta. $ |
As discussed in Introduction, if
$ \label{E-3}(suppθρ)(t,z):=¯{θ∈T | ρ(θ,t,z)≠0},Dθ(ρ)(t,z):=sup{|θ−θ∗| | θ,θ∗∈suppθρ(t,z)}. $
|
If there is no confusion, we set
Proposition 3. Let
$ (i)∫2π0ρ(t,θ,z)dθ=∫2π0ρ0(θ,z)dθ,∫2π0θρ(t,θ,z)dθ=∫2π0θρ0(θ,z)dθ.(ii)infθ∈Tρ(t,θ,z)≥0,ifinfθ∈Tρ0(θ,z)≥0. $
|
Proof. (ⅰ) The conservation of total phase can be followed by the direct integration of (28) using the periodic boundary condition in
$ \partial_t \int_0^{2\pi} \theta \rho d\theta = \int_0^{2\pi} \tilde{w}[\rho]\rho d\theta = \kappa(z)\int_{ \mathbb T^2} \sin(\theta_* - \theta) \rho(\theta_*,z)\rho(\theta,z)d\theta_* d\theta = 0, $ |
where the last equality follows from the antisymmetry of the integrand.
(ⅱ) For this, we consider the following characteristic:
$ \frac{\partial}{\partial s} \tilde{\theta}(s;0,\theta,z) = \tilde{\omega}[\rho](\tilde{\theta}(s;0,\theta,z),s,z), \quad \tilde{\theta}(0;0,\theta,z) = \theta. $ |
Now, we integrate (28) along the characteristic curve to yield
$ \rho(\theta,t,z) = \rho^0(\tilde{\theta}(0;0,\theta,z),z) \exp \left(\int_0^t -\tilde{\omega}[\rho](\tilde{\theta}(s;0,\theta,z),s,z) ds\right). $ |
From this, we can deduce the non-negativity of the process
Remark 3. Proposition 3 yields that
$ ρc(z)≡1,θρ,c(z)≡0,infθ∈Tρ0(θ,z)≥0,for anyz∈Ω. $
|
(29) |
Under the above setting, we have
$ \partial_z^l {\mathcal L}[\rho] = \partial_z^l \int_ \mathbb T |\theta|^2 \rho(\theta,z) d\theta = {\mathcal L}[\partial_z^l \rho(z)]. $ |
Thus, for the local sensitivity analysis of
Now we provide the contraction property of the
Lemma 4.1. Suppose that the
$ 0 < D_\theta(\rho^0)(z) < \pi, \quad for \ each\quad z \in \Omega. $ |
Then, for
$ D_\theta(\rho)(t,z) \le D_\theta(\rho^0)(z), \quad for \ each\quad z \in \Omega. $ |
Proof. Consider a forward characteristic
$ \frac{\partial}{\partial s} \tilde{\theta}(s;t,\theta,z) = \tilde{\omega}[\rho](\tilde{\theta}(s;t,\theta,z),t,z), \quad \tilde{\theta}(t;t,\theta,z) = \theta. $ |
First we consider characteristic curve starting from the maximal point
$ ∂∂s˜θ(s;t,θM,z)|s=t+=κ(z)∫Tsin(θ−θM)ρ(θ,z)dθ≤0. $
|
(30) |
Similarly, the characteristics curve starting from the minimal point
$ ∂∂s˜θ(s;t,θm,z)|s=t+≥0. $
|
(31) |
Thus, we can deduce from (30) and (31) that
Proposition 4. Let
$ 0 < D_\theta(\rho^0)(z) < \pi, \quad for \ each\quad z \in \Omega $ |
Then,
$ {\mathcal L}[\rho](t,z) \le {\mathcal L}[\rho^0](z)e^{-2 \kappa(z)R_0(z) t}, \quad t \geq 0, $ |
where
$ R0(z):=sinDθ(ρ0)(z)Dθ(ρ0)(z). $
|
(32) |
Proof. Under the setting (29), the functional
$ {\mathcal L}[\rho] : = \int_ \mathbb T |\theta|^2 \rho(\theta) d\theta. $ |
Then, it follows from (28) that
$ ∂tL[ρ](t,z)=2∫Tθ˜ω[ρ]ρdθ=2κ(z)∫T2θsin(θ∗−θ)ρ(θ∗,z)ρ(θ,z)dθ∗dθ=−κ(z)∫T2(θ−θ∗)sin(θ−θ∗)ρ(θ∗,z)ρ(θ,z)dθ∗dθ, $
|
where we used the change of variable
On the other hand, by assumption and Lemma 4.1,
$ |θ−θ∗|≤Dθ(ρ0)(z)<π,∀θ,θ∗∈(suppθρ)(t,z). $
|
(33) |
Since
$ xsinx≥R0(z)x2,∀x∈[−Dθ(ρ0),Dθ(ρ0)],Dθ(ρ0)∈(0,π). $
|
(34) |
We use (33) and (34) to yield
$ ∂∂tL[ρ](t,z)≤−κ(z)R0(z)∫T2|θ−θ∗|2ρ(θ∗,z)ρ(θ,z)dθ∗dθ≤−κ(z)R0(z)∫T2(θ2+θ2∗)ρ(θ∗,z)ρ(θ,z)dθ∗dθ=−2κ(z)R0(z)L[ρ](t,z), $
|
(35) |
where we used
$ |\theta - \theta_*|^2 = |\theta - \theta_c|^2 + |\theta_* - \theta_c|^2 +2(\theta-\theta_c)(\theta_c - \theta_*) $ |
and Proposition 4.1 (ⅰ).
Finally, we use Grönwall's lemma on (35) to obtain the desired result.
As a direct corollary of Proposition 4, we have the following exponential decay of
Corollary 1. Suppose that the initial data and coupling strength satisfy the following conditions:
$ 0 \leq \sup\limits_{z \in \Omega} D_\theta(\rho^0)(z) < \pi - \varepsilon \quad and \quad \inf\limits_{z \in \Omega} \kappa(z) \ge \eta > 0 $ |
where
$ \mathbb{E}[{\mathcal L}[\rho]](t) \le \mathbb{E}[{\mathcal L}[\rho^0]]e^{-2 C t}. $ |
Before we consider the local sensitivity analysis about phase concentration, we first provide the following technical lemma.
Lemma 4.2. For
$ D_\theta(\rho^0)(z) < \frac{\pi}{2}, \quad for \ each\quad z \in \Omega. $ |
Then for
$ (i)∂tL[|∂αθρ|](t,z)≤−2κ(z)R0(z)(L[|∂αθρ|](t,z)+‖∂αθρ(t,z)‖L1θL[ρ](t,z))+2κ(z)‖∂αθρ‖L1θ√L[ρ]+ακL[|∂αθρ|](t,z)+κ(z)α+1∑μ=2(α+1μ)L[|∂α+1−μθρ|](t,z),(ii)∂tL[|∂αθρ|](t,z)≥−2κ(z)(L[|∂αθρ|](t,z)+‖∂αθρ(t,z)‖L1θL[ρ](t,z))−2κ(z)‖∂αθρ‖L1θ√L[ρ]+ακcosDθ(ρ0)(z)L[|∂αθρ|](t,z)−κ(z)α+1∑μ=2(α+1μ)L[|∂α+1−μθρ|](t,z), $
|
where
Proof. Since the proof is rather lengthy, we leave its proof to Appendix B.
Now, we are ready to provide the local sensitivity analysis for phase concentration. Note that for
$ ∂t(∂lzρ)+˜ω[ρ]∂θ(∂lzρ)=−(∂θ˜ω[ρ])∂lzρ−∂θ[l∑r=1(lr)∂rz˜ω[ρ]∂l−rzρ]. $
|
(36) |
Note that the
Theorem 4.3. Suppose that initial density
$ 0 < D_\theta(\rho^0)(z) < \frac{\pi}{2}, \quad R_0(z) = \frac{\sin D_\theta (\rho^0)(z)}{D_\theta(\rho^0)(z)} > \frac{1}{2}, \quad for \ each\quad z \in \Omega, $ |
and the coupling strength
$ J[\rho](z) : = \sup\limits_{t \ge 0}(\|\partial_z \rho(z)\|_{L_\theta^1} + \|\partial_\theta \rho(z)\|_{L_\theta^1}) < \infty, \quad for \ each\quad z \in \Omega. $ |
Then we have
$ {\mathcal L}[|\partial_z \rho|](t,z) \le {\mathcal L}[|\partial_z \rho^0|](z)e^{-2 \kappa(z)R_0(z) t} + \frac{\mathcal{D}(z)}{\kappa(z)}e^{-\kappa(z)(2R_0(z) - 1)t}, $ |
where the non-negative random function
$ D(z):=2κ(z)J[ρ]√L[ρ0]+(|∂zκ(z)|+κ(z)J[ρ])(L[ρ0]+L[|∂θρ0|]+2J[ρ]√L[ρ0]+L[ρ0]1−R0(z)). $
|
Proof. We differentiate (28) with respect to
$ ∂t(∂zρ)+∂θ(∂z˜ω[ρ]ρ+˜ω[ρ]∂zρ)=0. $
|
(37) |
We multiply (37) by
$ ∂t|∂zρ|=−∂θ(˜ω[ρ]|∂zρ|)−∂θ(∂z˜ω[ρ]ρ)sgn(∂zρ). $
|
(38) |
Then, one can use (38) to obtain
$ ∂tL[|∂zρ|]=−∫Tθ2{∂θ(˜ω[ρ]|∂zρ|)+∂θ(∂z˜ω[ρ]ρ)sgn(∂zρ)}dθ=:I11+I12. $
|
(39) |
Next, we estimate
● Step A (Estimates for
$ I11=2∫Tθ˜ω[ρ]|∂zρ|dθ=2κ∫T2θsin(θ∗−θ)ρ(θ∗)|∂zρ(θ)|dθ∗dθ=κ∫T2sin(θ∗−θ)(θρ(θ∗)|∂zρ(θ)|−θ∗ρ(θ)|∂zρ(θ∗)|)dθ∗dθ=−κ∫T2(θ−θ∗)sin(θ−θ∗)(ρ(θ∗)|∂zρ(θ)|+ρ(θ)|∂zρ(θ∗)|)dθ∗dθ+κ∫T2sin(θ∗−θ)(θ∗ρ(θ∗)|∂zρ(θ)|−θρ(θ)|∂zρ(θ∗)|)dθ∗dθ=:I111+I112. $
|
(40) |
$ I111≤−2κR0(L[|∂zρ|]+‖∂zρ‖L1θL[ρ]). $
|
(41) |
$ I112≤2κ‖∂zρ‖L1θ√L[ρ]≤2κ‖∂zρ‖L1θ√L[ρ0]e−κR0t. $
|
(42) |
In (40), we combine (41) and (42) to obtain
$ I11≤−2κR0(L[|∂zρ|]+‖∂zρ‖L1θL[ρ])+2κ‖∂zρ‖L1θ√L[ρ0]e−κR0t. $
|
(43) |
● Step B (Estimates for
$ I12=−∫Tθ2(∂θ∂z˜ω[ρ]ρ+∂z˜ω[ρ]∂θρ)sgn(∂zρ) dθ=:I121+I122. $
|
(44) |
$ I121=∫T2θ2cos(θ∗−θ)(∂zκρ(θ∗)+κ∂zρ(θ∗))ρ(θ)sgn(∂zρ(θ))dθ∗dθ≤(|∂zκ|+κ‖∂zρ‖L1θ)L[ρ]. $
|
(45) |
$ I122=∫T2θ2cos(θ∗−θ)(∂zκρ(θ∗)+κ(z)∂zρ(θ∗))∂θρ(θ)sgn(∂zρ(θ))dθ∗dθ≤(|∂zκ|+κ‖∂zρ‖L1θ)L[|∂θρ|]. $
|
(46) |
It follows from Proposition 4 and Lemma 4.2 that
$ ∂∂tL[|∂θρ|](t,z)≤−2κR0(L[|∂θρ|]+‖∂θρ‖L1θL[ρ])+2κ‖∂θρ‖L1θ√L[ρ]+κL[|∂θρ|]+κL[ρ]≤−κ(2R0−1)L[|∂θρ|]+κ(2‖∂θρ‖L1θ√L[ρ]+L[ρ])≤−κ(2R0−1)L[|∂θρ|]+κ(2J[ρ]√L[ρ0]+L[ρ0])e−κR0t, $
|
(47) |
where
$ J[\rho](z) : = \sup\limits_{t \ge 0}\left(\|\partial_z \rho\|_{L_\theta^1} + \|\partial_\theta \rho\|_{L_\theta^1} \right). $ |
Thus we use the Grönwall-type inequality in Lemma 2.3 on (47) to yield
$ {\mathcal L}[|\partial_\theta \rho|] \le \left( {\mathcal L}[|\partial_\theta \rho^0|] + \frac{2J[\rho]\sqrt{ {\mathcal L}[\rho^0]} + {\mathcal L}[\rho^0]}{1-R_0}\right)e^{-\kappa(2R_0-1)t}. $ |
Therefore, we can obtain
$ I12≤(|∂zκ|+κ‖∂zρ‖L1θ)L[ρ]+(|∂zκ|+κ‖∂zρ‖L1θ)L[|∂θρ|]≤(|∂zκ|+κJ[ρ])L[ρ0]e−2κR0t+(|∂zκ|+κJ[ρ])(L[|∂θρ0|]+2J[ρ]√L[ρ0]+L[ρ0]1−R0)e−κ(2R0−1)t≤(|∂zκ|+κJ[ρ])(L[ρ0]+L[|∂θρ0|]+2J[ρ]√L[ρ0]+L[ρ0]1−R0)e−κ(2R0−1)t. $
|
(48) |
We combine (43) and (48) to yield
$ ∂∂tL[|∂zρ|]≤−2κR0(L[|∂zρ|]+‖∂zρ‖L1θL[ρ])+2κ‖∂zρ‖L1θ√L[ρ0]e−κR0t+(|∂zκ|+κJ[ρ])(L[ρ0]+L[|∂θρ0|]+2J[ρ]√L[ρ0]+L[ρ0]1−R0)e−κ(2R0−1)t≤−2κR0L[|∂zρ|]+De−κ(2R0−1)t, $
|
where the random function
$ D(z):=2κJ[ρ]√L[ρ0]+(|∂zκ|+κJ[ρ])(L[ρ0]+L[|∂θρ0|]+2J[ρ]√L[ρ0]+L[ρ0]1−R0). $
|
Hence, we use the Grönwall type inequality to obtain
$ {\mathcal L}[|\partial_z \rho|] \le {\mathcal L}[|\partial_z \rho^0|]e^{-2 \kappa R_0 t} + \frac{\mathcal{D}}{\kappa}e^{-\kappa (2R_0 - 1)t}. $ |
This yields our desired result.
Remark 4. In this remark, we discuss our results about local sensitivity analysis for the functional
$ \partial_t {\mathcal L}[|\partial_\theta^2 \rho|](t,z) \le 2\kappa(z) \left(1- R_0(z) \right) {\mathcal L}[|\partial_\theta^2 \rho|](t,z) + \mbox{L.O.T.} $ |
Since the coefficient
$ \partial_t {\mathcal L}[|\partial_\theta^\alpha \rho|](t,z) \ge \kappa(z) \Big(\alpha \kappa \cos D_\theta (\rho^0)(z) - 2 \Big) {\mathcal L}[|\partial_\theta^\alpha \rho|](t,z) + \mbox{L.O.T.} $ |
Thus, if
$ \alpha \cos D_\theta (\rho^0)(z) -2 > 0 \quad \mbox{for some} \ \ z \in \Omega, $ |
then we can deduce the exponential growth of
$ \rho(t,\theta, z) \to \delta_{\theta_c(z)}(\theta) \quad \mbox{in probability,} \quad \mbox{as} \quad t \to \infty. $ |
Since
In this paper, we provided a local sensitivity analysis for the kinetic Kuramoto equation with random inputs in a large coupling regime. In the absence of random inputs, it is well known that the kinetic Kuramoto model exhibits a phase concentration phenomena in the large coupling regime. In authors' earlier series of works, we have begun a systematic local sensitivity analysis for the Kuramoto model with random inputs. For the Kuramoto model, we provided a sufficient framework for the local sensitivity analysis on the asymptotic dynamics of solution process. In this work, we have not only shown the well-posedness of the uncertain problem and stability under random perturbation, but also conducted local sensitivity analysis regarding the phase concentration that could be observed in the Kuramoto model for identical oscillators. For this, we have considered a Lyapunov functional measuring the phase concentration and performed a local sensitivity analysis on the functional. In summary, we found two interesting effects due to uncertainties for (2):
● (Decreasing
$ \|\partial_z^l f^0(z)\|_{W^{k-l,\infty}_{\theta, \nu}} < \infty \quad \Longrightarrow \quad \sup\limits_{0 \leq t < T}\|\partial_z^l f(t,z)\|_{W^{k-l,\infty}_{\theta, \nu}} \le C(z,T). $ |
● (Formation of zero
Of course, there are several interesting remaining issues on the role of random inputs. For example, in a small and critical coupling regimes, it is not known how the random inputs affects the overall collective dynamics or not. This will be addressed in future works.
Since the local existence of regular solutions can be done using the standard argument based on contraction mapping theorem, we only provide a priori estimates to conclude the global-in-time existence of regular solutions in any finite-time interval. A priori estimates can be done inductively.
Recall that
$ ∂tf+ω[f]∂θf+(∂θω[f])f=0,l=0,∂t(∂lzf)+ω[f]∂θ(∂lzf)+(∂θω[f])(∂lzf)=−l∑r=1(lr)∂θ[(∂rzω[f])(∂l−rzf)],l≥1. $
|
(49) |
● (Initial step): For
$ \sup\limits_{t \in [0,T)}\|f(t,z)\|_{W^{k,\infty}} \le C(z, T) \|f^0(z)\|_{W^{k,\infty}}. $ |
● (Inductive step): Suppose that
$ supt∈[0,T)‖∂rzf(t,z)‖Wk−r,∞≤C(z,T),0≤r≤l−1. $
|
(50) |
In order to get the desired estimate, we need to estimate
$ (\alpha, \beta) = (0, 0), \qquad 1 \leq \alpha + \beta \leq k-l. $ |
$ ∂t(∂lzf)+ω[f]∂θ(∂lzf)=−(∂θω[f])(∂lzf)−l∑r=1(lr)∂θ∂rzω[f]∂l−rzf−l∑r=1(lr)∂rzω[f]∂θ∂l−rzf=:R3. $
|
(51) |
We use Lemma 3.1, (50),
$ |(∂θω[f])(∂lzf)|≤κ(z)‖∂lzf‖L∞,|l∑r=1(lr)∂θ∂rzω[f]∂l−rzf|≤2lC(z)l∑r=1(r∑p=0‖∂pzf‖L∞)‖∂l−rzf‖L∞≤C(z,T),|l∑r=1(lr)∂rzω[f]∂θ∂l−rzf|≤2lC(z)C(z,T)l∑r=1(r∑p=0‖∂pzf‖L∞)≤C(z,T). $
|
Thus, we have
$ |R3|≤C(z,T)(‖∂lzf‖L∞+1). $
|
(52) |
Next, we integrate the above relation (51) along the characteristics using the relation (52) to get
$ ‖∂lzf(t,z)‖L∞≤‖∂lzf0(z)‖L∞+C(z,T)(1+∫t0‖∂lzf(τ,z)‖L∞dτ). $
|
(53) |
$ ∂t(∂αθ∂βν∂lzf)+α+1∑μ=0β∑λ=0l∑r=0(α+1μ)(βλ)(lr)∂μθ∂λν∂rzω[f]∂α+1−μθ∂β−λν∂l−rzf=0. $
|
(54) |
$ ∂t(∂αθ∂βν∂lzf)+ω[f]∂θ(∂αθ∂βν∂lzf)=−β∂α+1θ∂β−1ν∂lzf−α+1∑μ=1(α+1μ)∂μθω[f]∂α+1−μθ∂βν∂lzf−α+1∑μ=0l∑r=1(α+1μ)(lr)∂μθ∂rzω[f]∂α+1−μθ∂βν∂l−rzf=:I21+I22+I23. $
|
(55) |
Below, we separately estimate
$ |I21|≤β‖∂lzf‖Wα+β,∞. $
|
(56) |
$ |I22|≤α+1∑μ=1(α+1μ)|∂μθω[f]∂α+1−μθ∂βν∂lzf|≤C(z)α+1∑μ=1‖∂α+1−μθ∂βν∂lzf‖L∞≤C(z)‖∂lzf‖Wα+β,∞. $
|
(57) |
$ |I23|≤α+1∑μ=0l∑r=1(α+1μ)(lr)|∂μθ∂rzω[f]∂α+1−μθ∂βν∂l−rzf|≤2α+12lC(z)α+1∑μ=0l∑r=1(r∑p=0‖∂pzf‖L∞)‖∂α+1−μθ∂βν∂l−rzf‖L∞. $
|
(58) |
Now, we combine all estimates (56), (57), (58) and use the induction assumption to get
$ |I21+I22+I23|≤C(z,T)(‖∂lzf‖Wα+β,∞+α+1∑μ=0l∑r=1‖∂α+1−μθ∂βν∂l−rzf‖L∞)≤C(z,T)(‖∂lzf‖Wα+β,∞+1), $
|
(59) |
Next, we integrate (55) along the characteristics and use (59) to yield
$ ‖∂αθ∂βν∂lzf(t,z)‖L∞≤‖∂αθ∂βν∂lzf0(z)‖L∞+C(z,T)(1+∫t0‖∂lzf(τ,z)‖Wα+β,∞dτ). $
|
(60) |
$ ‖∂αθ∂lzf(t,z)‖L∞≤‖∂αθ∂lzf0(z)‖L∞+C(z,T)(1+∫t0‖∂lzf(τ,z)‖Wα,∞dτ). $
|
(61) |
Finally, we gather the results in (60) and (61), sum those over all
$ \|\partial_z^l f(t,z)\|_{W^{k-l,\infty}} \le \|\partial_z^l f^0(z)\|_{W^{k-l,\infty}} + C(z,T)\left(1 + \int_0^t \|\partial_z^l f(\tau,z)\|_{W^{k-l,\infty}} d\tau \right). $ |
Finally, we use Grönwall's lemma to derive the desired estimate.
In this section, we present a proof of Lemma 4.2. It follows from (28) that
$ ∂t(∂αθρ)+∂α+1θ(˜ω[ρ]ρ)=0, $
|
(62) |
or equivalently,
$ ∂t(∂αθρ)+∂θ(˜ω[ρ]∂αθρ)+α∂θ˜ω[ρ]∂αθρ+α+1∑μ=2(α+1μ)∂μθ˜ω[ρ]∂α+1−μθρ=0. $
|
(63) |
We multiply (63) by
$ ∂∂tL[|∂αθρ|]=∫Tθ2∂t|∂αθρ|dθ=2∫Tθ˜ω[ρ]|∂αθρ|dθ−α∫Tθ2∂θ˜ω[ρ]|∂αθρ|dθ−α+1∑μ=2(α+1μ)∫Tsgn(∂αθρ)θ2∂μθ˜ω[ρ]∂α+1−μθρ dθ.=:I31+I32+I33 $
|
(64) |
(ⅰ) (An upper bound estimate): we separately estimate
● Case A (Estimates for
$ I31=2κ(z)∫T2θsin(θ∗−θ)ρ(θ∗)|∂αθρ(θ)|dθ∗dθ=κ(z)∫T2sin(θ∗−θ)(θρ(θ∗)|∂αθ(θ)|−θ∗ρ(θ)|∂αθ(θ∗)|)dθ∗dθ=−κ(z)∫T2(θ−θ∗)sin(θ−θ∗)(ρ(θ)|∂αθρ(θ∗)|+ρ(θ∗)|∂αθρ(θ)|)dθ∗dθ+κ(z)∫T2sin(θ−θ∗)(θρ(θ)|∂αθρ(θ∗)|−θ∗ρ(θ∗)|∂αθρ(θ)|)dθ∗dθ.=:I311+I312. $
|
(65) |
$ I311≤−˜κ(z)∫T2|θ−θ∗|2(ρ(θ)|∂αθρ(θ∗)|+ρ(θ∗)|∂αθρ(θ)|dθ∗dθ=−~κ(z)∫T2(θ2+θ2∗)(ρ(θ)|∂αθρ(θ∗)|+ρ(θ∗)|∂αθρ(θ)|dθ∗dθ=−2˜κ(L[|∂αθρ|]+‖∂αθρ‖L1θL[ρ]). $
|
(66) |
$ I312≤κ(z)∫T2|θ∗|ρ(θ∗)|∂αθρ(θ)|+|θ|ρ(θ)|∂αθρ(θ∗)|dθ∗dθ=2κ(z)‖∂αθρ‖L1θ∫T|θ|ρ(θ)dθ≤2κ(z)‖∂αθρ‖L1θ√L[ρ], $
|
(67) |
where we used Cauchy-Schwarz inequality. In (65), we combine (66) and (67) to obtain
$ I31≤−2˜κ(L[|∂αθρ|]+‖∂αθρ‖L1θL[ρ])+2κ(z)‖∂αθρ‖L1θ√L[ρ]. $
|
(68) |
● Case B (Estimates for
$ I32=ακ(z)∫T2θ2cos(θ∗−θ)ρ(θ∗)|∂αθρ(θ)|dθ∗dθ≤ακ(z)∫Tθ2|∂αθρ(θ)|dθ=ακ(z)L[|∂αθρ|]. $
|
(69) |
● Case C (Estimates for
$ I33≤α+1∑μ=2(α+1μ)∫Tθ2|∂α+1−μθρ||∂μθ˜ω[ρ]|dθ≤κ(z)α+1∑μ=2(α+1μ)L[|∂α+1−μθρ|], $
|
(70) |
where we used
$ |\partial_\theta^\mu \tilde{w}[\rho]| \le \kappa(z)\int_{ \mathbb T} \rho(\theta_*)d\theta_* = \kappa(z). $ |
Therefore, we combine all the estimates for
$ ∂∂tL[|∂αθρ|]≤−2˜κ(L[|∂αθρ|]+‖∂αθρ‖L1θL[ρ])+2κ(z)‖∂αθρ‖L1θ√L[ρ]+ακL[|∂αθρ|]+κα+1∑μ=2(α+1μ)L[|∂α+1−μθρ|], $
|
which is our desired upper-bound estimate.
(ⅱ) (A lower bound estimate): we will estimate separately
$ I311≥−κ(z)∫T2|θ−θ∗|2(ρ(θ)|∂αθρ(θ∗)|+ρ(θ∗)|∂αθρ(θ)|)dθ∗dθ≥−κ(z)(L[|∂αθρ|]+‖∂αθρ‖L1θL[ρ]),I312≥−2κ(z)‖∂αθρ‖L1θ√L[ρ]. $
|
For
$ \mathcal{I}_{32} \ge \alpha \kappa(z) \cos D_\theta (\rho^0)(z) \int_ \mathbb T \theta^2 |\partial_\theta^\alpha \rho(\theta)|d\theta = \alpha \kappa(z) \cos D_\theta(\rho^0)(z) {\mathcal L}[|\partial_\theta^\alpha \rho|]. $ |
For
$ \mathcal{I}_{33} \ge -\sum\limits_{\mu = 2}^{\alpha+1}\binom{\alpha+1}{\mu} \int_ \mathbb T \theta^2 |\partial_\theta^{\alpha+1-\mu}\rho| |\partial_\theta^\mu \tilde{w}[\rho]| d\theta \ge -\kappa(z) \sum\limits_{\mu = 2}^{\alpha+1} \binom{\alpha+1}{\mu} {\mathcal L}[|\partial_\theta^{\alpha+1-\mu} \rho|]. $ |
We combine all estimates for
$ ∂∂tL[|∂αθρ|]≥−2κ(L[|∂αθρ|]+‖∂αθρ‖L1θL[ρ])−2κ(z)‖∂αθρ‖L1θ√L[ρ]+ακcosDθ(ρ0)L[|∂αθρ|]−κα+1∑μ=2(α+1μ)L[|∂α+1−μθρ|], $
|
which gives our desired lower-bound estimate.
The work of S.-Y. Ha was supported by National Research Foundation of Korea(NRF-2017R1A2B2001864), and the work of S. Jin was supported by NSFC grant No. 31571071, NSF grants DMS-1522184 and DMS-1107291: RNMS KI-Net, and by the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin. The work of J. Jung is supported by the German Research Foundation (DFG) under the project number IRTG2235.
[1] | The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys (2005) 77: 137-185. |
[2] | Existence of partial entrainment and stability of phase-locking behavior of coupled oscillators. Prog. Theor. Phys. (2004) 112: 921-941. |
[3] |
G. Albi, L. Pareschi and M. Zanella, Uncertain quantification in control problems for flocking models, Math. Probl. Eng., 2015 (2015), Art. ID 850124, 14pp. doi: 10.1155/2015/850124
![]() |
[4] |
Exponential dephasing of oscillators in the kinetic Kuramoto model. J. Stat. Phys. (2016) 162: 813-823. ![]() |
[5] |
On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. (2015) 13: 1775-1786. ![]() |
[6] |
J. Bronski, L. Deville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17pp. doi: 10.1063/1.4745197
![]() |
[7] | J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature, 211 (1966), 562. |
[8] |
Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. (2014) 156: 395-415. ![]() |
[9] | Particle based gPC methods for mean-field models of swarming with uncertainty. Comm. in Comp. Phys. (2019) 25: 508-531. |
[10] |
Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D (2012) 241: 735-754. ![]() |
[11] |
On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control (2009) 54: 353-357. ![]() |
[12] |
Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. (2013) 11: 465-480. ![]() |
[13] |
Synchronization in complex networks of phase oscillators: A survey. Automatica (2014) 50: 1539-1564. ![]() |
[14] |
On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. (2011) 10: 1070-1099. ![]() |
[15] |
Synchronization in a pool of mutually coupled oscillators with random frequencies. J. Math. Biol (1985) 22: 1-9. ![]() |
[16] |
Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic Relat. Models. (2018) 11: 859-889. ![]() |
[17] |
A local sensitivity analysis for the kinetic Cucker-Smale equation with random inputs. J. Differential Equations (2018) 265: 3618-3649. ![]() |
[18] | S.-Y. Ha, S. Jin and J. Jung, Local sensitivity analysis for the Kuramoto mdoel with random inputs in a large coupling regime, Submitted. |
[19] |
Uniform stability and mean-field limit for the augmented Kuramoto model. Netw. Heterog. Media (2018) 13: 297-322. ![]() |
[20] |
Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. (2016) 4: 1073-1091. ![]() |
[21] |
Collective synchronization of classical and quantum oscillators. EMS Surveys in Mathematical Sciences (2016) 3: 209-267. ![]() |
[22] |
From particle to kinetic and hydrodynamic description of flocking. Kinetic and Related Models (2008) 1: 415-435. ![]() |
[23] | A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the American Control Conference, (2004), 4296-4301. |
[24] | E. H. Kennard, Kinetic theory of gases. McGraw-Hill Book Company, New York and London, 1938. |
[25] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin. 1984. doi: 10.1007/978-3-642-69689-3
![]() |
[26] | Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), 420. |
[27] |
On the vlasov limit for systems of nonlinearly coupled oscillators without noise. Transport Theory and Statistical Physics (2005) 34: 523-535. ![]() |
[28] |
The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Science (2007) 17: 309-347. ![]() |
[29] |
The spectrum of the locked state for the Kuramoto model of coupled oscillators. Physica D (2005) 205: 249-266. ![]() |
[30] |
Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. (1991) 63: 613-635. ![]() |
[31] |
H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation. In kinetic theories and the Boltzmann equation, Kinetic Theories and the Boltzmann Equation (Montecatini, 1981), 60-110, Lecture Notes in Math., 1048, Springer, Berlin, 1984. doi: 10.1007/BFb0071878
![]() |
[32] |
(2001) Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press. ![]() |
[33] |
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D (2000) 143: 1-20. ![]() |
[34] |
A convergence result for the Kurmoto model with all-to-all couplings. SIAM J. Appl. Dyn. Syst. (2011) 10: 906-920. ![]() |
[35] |
On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph. SIAM J. Appl. Dyn. Syst. (2009) 8: 417-453. ![]() |
[36] |
Global phase-locking in finite populations of phase-coupled oscillators. SIAM J. Appl. Dyn. Syst. (2008) 7: 134-160. ![]() |
[37] | Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. (1967) 16: 15-42. |
1. | Seung-Yeal Ha, Shi Jin, Jinwook Jung, Woojoo Shim, A local sensitivity analysis for the hydrodynamic Cucker-Smale model with random inputs, 2020, 268, 00220396, 636, 10.1016/j.jde.2019.08.031 | |
2. | Ning Jiang, Zeng Zhang, Local Well-Posedness and Sensitivity Analysis for the Self-Organized Kinetic Model, 2021, 176, 0167-8019, 10.1007/s10440-021-00457-8 |