Citation: Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics[J]. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
[1] | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787 |
[2] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[3] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[4] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[5] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[6] | Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030 |
[7] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[8] | Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005 |
[9] | Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005 |
[10] | Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001 |
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137
![]() |
[2] |
T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp. doi: 10.1063/1.2952447
![]() |
[3] |
R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8
![]() |
[4] |
S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68. doi: 10.1007/s11071-008-9379-6
![]() |
[5] |
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0
![]() |
[6] |
L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp. doi: 10.1063/1.3049136
![]() |
[7] |
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011
![]() |
[8] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004
![]() |
[9] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884
![]() |
[10] | X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011. |
[11] |
F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X
![]() |
[12] |
R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60. doi: 10.1016/S0375-9601(99)00667-2
![]() |
[13] |
S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003
![]() |
[14] |
S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156. doi: 10.1088/0951-7715/23/12/008
![]() |
[15] |
S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5
![]() |
[16] | A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004. |
[17] | J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012. |
[18] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984. doi: 10.1007/978-3-642-69689-3
![]() |
[19] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422. |
[20] | P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp. |
[21] |
M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292. doi: 10.1007/s11071-012-0346-x
![]() |
[22] | M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp. |
[23] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x
![]() |
[24] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017
![]() |
[25] |
R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635. doi: 10.1007/BF01029202
![]() |
[26] |
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp. doi: 10.1063/1.2930766
![]() |
[27] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
![]() |
[28] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46. doi: 10.1143/PTP.79.39
![]() |
[29] |
E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210. doi: 10.1142/9789814282321_0013
![]() |
[30] |
S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347. doi: 10.1007/BF00276440
![]() |
[31] | A. T. Winfree, The Geometry of Biological Time, Springer New York 1980. |
[32] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42. doi: 10.1016/0022-5193(67)90051-3
![]() |
[33] |
H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804
![]() |
1. | Hyungjin Huh, Seung-Yeal Ha, Dynamical system approach to synchronization of the coupled Schrödinger–Lohe system, 2017, 75, 0033-569X, 555, 10.1090/qam/1465 | |
2. | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li, Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators, 2017, 12, 1556-181X, 1, 10.3934/nhm.2017001 | |
3. | Hyeong‐Ohk Bae, Seung‐Yeal Ha, Doheon Kim, Yongsik Kim, Hyuncheul Lim, Jane Yoo, Emergent dynamics of the first‐order stochastic Cucker‐Smale model and application to finance, 2019, 42, 0170-4214, 6029, 10.1002/mma.5697 | |
4. | Seung-Yeal Ha, Myeongju Kang, Hansol Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, 2021, 62, 0022-2488, 052701, 10.1063/5.0038769 | |
5. | Dongnam Ko, Practical Synchronization of Winfree Oscillators in a Random Environment, 2019, 174, 0022-4715, 1263, 10.1007/s10955-019-02234-2 | |
6. | Sun-Ho Choi, Hyowon Seo, Asymptotic behavior of the Kuramoto system with periodic natural frequency, 2022, 308, 00220396, 160, 10.1016/j.jde.2021.11.007 | |
7. | Seung-Yeal Ha, Young-Heon Kim, Javier Morales, Jinyeong Park, Emergence of phase concentration for the Kuramoto–Sakaguchi equation, 2020, 401, 01672789, 132154, 10.1016/j.physd.2019.132154 | |
8. | Yushi Shi, Ting Li, Jiandong Zhu, Complete Phase Synchronization of Nonidentical High-Dimensional Kuramoto Model, 2023, 190, 0022-4715, 10.1007/s10955-022-03023-0 | |
9. | Jin Gyu Lee, Stephan Trenn, Hyungbo Shim, Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling, 2022, 141, 00051098, 110276, 10.1016/j.automatica.2022.110276 | |
10. | Jin Gyu Lee, Rodolphe Sepulchre, 2020, Rapid synchronization under weak synaptic coupling, 978-1-7281-7447-1, 6168, 10.1109/CDC42340.2020.9304484 | |
11. | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park, Interplay of inertia and heterogeneous dynamics in an ensemble of Kuramoto oscillators, 2017, 15, 0219-5305, 837, 10.1142/S0219530516500111 | |
12. | Seung-Yeal Ha, Dohyun Kim, Emergence of synchronous behaviors for the Schrödinger–Lohe model with frustration, 2019, 32, 0951-7715, 4609, 10.1088/1361-6544/ab3626 | |
13. | Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati, The Wigner-Lohe model for quantum synchronization and its emergent dynamics, 2017, 12, 1556-181X, 403, 10.3934/nhm.2017018 | |
14. | Yilun Shang, Practical consensus for heterophilous multiagent networks with constrained states, 2022, 359, 00160032, 10931, 10.1016/j.jfranklin.2022.04.037 | |
15. | Xiufeng Guo, Pengchun Rao, Min Liu, Synchronization of Kuramoto-oscillator networks based on cyber-physical system, 2023, 82, 0374-4884, 121, 10.1007/s40042-022-00651-3 | |
16. | Hyungjin Huh, Seung-Yeal Ha, Dohyun Kim, Emergent behaviors of the Schrödinger–Lohe model on cooperative-competitive networks, 2017, 263, 00220396, 8295, 10.1016/j.jde.2017.08.050 | |
17. | Xinmiao Wei, Shanshan Peng, Jiandong Zhu, Exponential synchronization for nonidentical high-dimensional Kuramoto model, 2023, 177, 01676911, 105554, 10.1016/j.sysconle.2023.105554 | |
18. | Seung-Yeal Ha, Eun Taek Lee, Wook Yoon, Uniform-in-time stability and continuous transition of the time-discrete infinite Kuramoto model, 2025, 415, 00220396, 91, 10.1016/j.jde.2024.09.021 | |
19. | Seung-Yeal Ha, Euntaek Lee, Woojoo Shim, On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators, 2023, 190, 1572-9613, 10.1007/s10955-023-03184-6 | |
20. | Ruihong Li, Jiayi Liu, Dongmei Huang, Bounded synchronization of fractional-order chaotic systems with external disturbance based on dissipative decomposition, 2025, 100, 0031-8949, 035228, 10.1088/1402-4896/adb34d |