Loading [Contrib]/a11y/accessibility-menu.js

Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics

  • Received: 01 September 2014 Revised: 01 June 2015
  • Primary: 70F99; Secondary: 92B25.

  • We study the practical synchronization of the Kuramoto dynamics of units distributed over networks. The unit dynamics on the nodes of the network are governed by the interplay between their own intrinsic dynamics and Kuramoto coupling dynamics. We present two sufficient conditions for practical synchronization under homogeneous and heterogeneous forcing. For practical synchronization estimates, we employ the configuration diameter as a Lyapunov functional, and derive a Gronwall-type differential inequality for this value.

    Citation: Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics[J]. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787

    Related Papers:

    [1] Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
    [2] Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001
    [3] Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33
    [4] Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077
    [5] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [6] Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030
    [7] Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943
    [8] Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005
    [9] Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005
    [10] Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001
  • We study the practical synchronization of the Kuramoto dynamics of units distributed over networks. The unit dynamics on the nodes of the network are governed by the interplay between their own intrinsic dynamics and Kuramoto coupling dynamics. We present two sufficient conditions for practical synchronization under homogeneous and heterogeneous forcing. For practical synchronization estimates, we employ the configuration diameter as a Lyapunov functional, and derive a Gronwall-type differential inequality for this value.


    [1] J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137
    [2] T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp. doi: 10.1063/1.2952447
    [3] R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8
    [4] S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68. doi: 10.1007/s11071-008-9379-6
    [5] J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564. doi: 10.1038/211562a0
    [6] L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp. doi: 10.1063/1.3049136
    [7] Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011
    [8] Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44. doi: 10.1016/j.physd.2010.08.004
    [9] N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884
    [10] X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011.
    [11] F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X
    [12] R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60. doi: 10.1016/S0375-9601(99)00667-2
    [13] S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003
    [14] S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156. doi: 10.1088/0951-7715/23/12/008
    [15] S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5
    [16] A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004.
    [17] J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012.
    [18] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984. doi: 10.1007/978-3-642-69689-3
    [19] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422.
    [20] P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp.
    [21] M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292. doi: 10.1007/s11071-012-0346-x
    [22] M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp.
    [23] R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x
    [24] R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017
    [25] R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635. doi: 10.1007/BF01029202
    [26] E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp. doi: 10.1063/1.2930766
    [27] A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743
    [28] H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46. doi: 10.1143/PTP.79.39
    [29] E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210. doi: 10.1142/9789814282321_0013
    [30] S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347. doi: 10.1007/BF00276440
    [31] A. T. Winfree, The Geometry of Biological Time, Springer New York 1980.
    [32] A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42. doi: 10.1016/0022-5193(67)90051-3
    [33] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804
  • This article has been cited by:

    1. Hyungjin Huh, Seung-Yeal Ha, Dynamical system approach to synchronization of the coupled Schrödinger–Lohe system, 2017, 75, 0033-569X, 555, 10.1090/qam/1465
    2. Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li, Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators, 2017, 12, 1556-181X, 1, 10.3934/nhm.2017001
    3. Hyeong‐Ohk Bae, Seung‐Yeal Ha, Doheon Kim, Yongsik Kim, Hyuncheul Lim, Jane Yoo, Emergent dynamics of the first‐order stochastic Cucker‐Smale model and application to finance, 2019, 42, 0170-4214, 6029, 10.1002/mma.5697
    4. Seung-Yeal Ha, Myeongju Kang, Hansol Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, 2021, 62, 0022-2488, 052701, 10.1063/5.0038769
    5. Dongnam Ko, Practical Synchronization of Winfree Oscillators in a Random Environment, 2019, 174, 0022-4715, 1263, 10.1007/s10955-019-02234-2
    6. Sun-Ho Choi, Hyowon Seo, Asymptotic behavior of the Kuramoto system with periodic natural frequency, 2022, 308, 00220396, 160, 10.1016/j.jde.2021.11.007
    7. Seung-Yeal Ha, Young-Heon Kim, Javier Morales, Jinyeong Park, Emergence of phase concentration for the Kuramoto–Sakaguchi equation, 2020, 401, 01672789, 132154, 10.1016/j.physd.2019.132154
    8. Yushi Shi, Ting Li, Jiandong Zhu, Complete Phase Synchronization of Nonidentical High-Dimensional Kuramoto Model, 2023, 190, 0022-4715, 10.1007/s10955-022-03023-0
    9. Jin Gyu Lee, Stephan Trenn, Hyungbo Shim, Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling, 2022, 141, 00051098, 110276, 10.1016/j.automatica.2022.110276
    10. Jin Gyu Lee, Rodolphe Sepulchre, 2020, Rapid synchronization under weak synaptic coupling, 978-1-7281-7447-1, 6168, 10.1109/CDC42340.2020.9304484
    11. Seung-Yeal Ha, Se Eun Noh, Jinyeong Park, Interplay of inertia and heterogeneous dynamics in an ensemble of Kuramoto oscillators, 2017, 15, 0219-5305, 837, 10.1142/S0219530516500111
    12. Seung-Yeal Ha, Dohyun Kim, Emergence of synchronous behaviors for the Schrödinger–Lohe model with frustration, 2019, 32, 0951-7715, 4609, 10.1088/1361-6544/ab3626
    13. Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati, The Wigner-Lohe model for quantum synchronization and its emergent dynamics, 2017, 12, 1556-181X, 403, 10.3934/nhm.2017018
    14. Yilun Shang, Practical consensus for heterophilous multiagent networks with constrained states, 2022, 359, 00160032, 10931, 10.1016/j.jfranklin.2022.04.037
    15. Xiufeng Guo, Pengchun Rao, Min Liu, Synchronization of Kuramoto-oscillator networks based on cyber-physical system, 2023, 82, 0374-4884, 121, 10.1007/s40042-022-00651-3
    16. Hyungjin Huh, Seung-Yeal Ha, Dohyun Kim, Emergent behaviors of the Schrödinger–Lohe model on cooperative-competitive networks, 2017, 263, 00220396, 8295, 10.1016/j.jde.2017.08.050
    17. Xinmiao Wei, Shanshan Peng, Jiandong Zhu, Exponential synchronization for nonidentical high-dimensional Kuramoto model, 2023, 177, 01676911, 105554, 10.1016/j.sysconle.2023.105554
    18. Seung-Yeal Ha, Eun Taek Lee, Wook Yoon, Uniform-in-time stability and continuous transition of the time-discrete infinite Kuramoto model, 2025, 415, 00220396, 91, 10.1016/j.jde.2024.09.021
    19. Seung-Yeal Ha, Euntaek Lee, Woojoo Shim, On the Emergent Dynamics of the Infinite Set of Kuramoto Oscillators, 2023, 190, 1572-9613, 10.1007/s10955-023-03184-6
    20. Ruihong Li, Jiayi Liu, Dongmei Huang, Bounded synchronization of fractional-order chaotic systems with external disturbance based on dissipative decomposition, 2025, 100, 0031-8949, 035228, 10.1088/1402-4896/adb34d
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5418) PDF downloads(306) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog