[1]
|
Report from International Cocoa Organization (ICCO).
|
[2]
|
L. Bengtsson, X. Lu, A. Thorson, R. Garfield and J. von Schreeb, Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti, PLoS Medicine, 8 (2011), e1001083.
|
[3]
|
V. D. Blondel et al., Data for development: The D4D challenge on mobile phone data, arXiv:1210.0137, 2012.
|
[4]
|
V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech., 10 (2008), P10008.
|
[5]
|
S. Bocaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308. doi: 10.1016/j.physrep.2005.10.009
|
[6]
|
J. Bollen, H. Mao and X.-J. Zeng, Twitter mood predicts the stock market, J. Comput. Science, 2 (2011), 1-8. doi: 10.1016/j.jocs.2010.12.007
|
[7]
|
Available from: http://www.infrastructureafrica.org/library/doc/986/cote-divoire-roads.
|
[8]
|
Available from: http://ec.europa.eu/development/icenter/repository/scanned\_ci\_csp10\_fr.pdf.
|
[9]
|
N. Eagle, M. Macy and R. Claxton, Network diversity and economic development, Science, 328 (2010), 1029-1031. doi: 10.1126/science.1186605
|
[10]
|
T. Hastie, et al., The Elements of Statistical Learning, Springer, New York, 2009. doi: 10.1007/978-0-387-84858-7
|
[11]
|
D. Lazer, et al., Life in the network: The coming age of computational social science, Science, 323 (2009), 721-723.
|
[12]
|
M. P. Lewis, Ethnologue: Languages of the World, $16^{th}$ edition, SIL International, Dallas, Tex., 2009.
|
[13]
|
M. Lim, R. Metzler and Y. Bar-Yam, Global pattern formation and ethnic/cultural violence, Science, 317 (2007), 1540-1544. doi: 10.1126/science.1142734
|
[14]
|
A. J. Morales, J. Borondo, J. C. Losada and R. M. Benito, Efficiency of human activity on information spreading on Twitter, Social Networks, 39 (2014), 1-11. doi: 10.1016/j.socnet.2014.03.007
|
[15]
|
M. E. J. Newman, Modularity and community structure in networks, Phys. Rev. E, 103 (2006), 8577-8582. doi: 10.1073/pnas.0601602103
|
[16]
|
M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 (2003), 026126, 13pp. doi: 10.1103/PhysRevE.67.026126
|
[17]
|
D. Pastor, A. J. Morales, Y. Torres, J. Bauer, A. Wadhwa, C. Castro-Correa, A. Calderón-Mariscal, L. Romanoff, J. Lee, A. Rutherford, V. Frias-Martinez, N. Oliver, E. Frias-Martinez and M. Luengo-Oroz, Flooding through the lens of mobile phone activity, in IEEE Global Humanitarian Technology Conference (GHTC), IEEE, 2014, 279-286. doi: 10.1109/GHTC.2014.6970293
|
[18]
|
A. Pentland, Social Physics: How Good Ideas Spread. The Lessons From a New Science, Penguin Group (USA) Incorporated, 2014.
|
[19]
|
K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth and A. Aucinas, EmotionSense: A mobile phones based adaptive platform for experimental social psychology research, Proceedings of the 12th ACM International Conference on Ubiquitous Computing (New York, NY, USA), Ubicomp '10, ACM, 2010, 281-290. doi: 10.1145/1864349.1864393
|
[20]
|
T. Sakaki, M. Okazaki and Y. Matsuo, Earthquake shakes twitter users: Real-time event detection by social sensors, Proceedings of the 19th International Conference on World Wide Web (New York, NY, USA), WWW '10, ACM, 2010, 851-860. doi: 10.1145/1772690.1772777
|
[21]
|
J. L. Toole, M. Ulm, M. C González and D. Bauer, Inferring land use from mobile phone activity, in Proceedings of the ACM SIGKDD International Workshop on Urban Computing, ACM, 2012, 1-8. doi: 10.1145/2346496.2346498
|
[22]
|
A. Wesolowski, et al., Quantifying the impact of human mobility on malaria, Science, 338 (2012), 267-270.
|
[23]
|
="http://www.gsc.upm.es/materiales/videos/" target="_blank">http://www.gsc.upm.es/materiales/videos/
|