Citation: Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models[J]. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745
[1] | Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745 |
[2] | Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239 |
[3] | Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini . Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29 |
[4] | Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481 |
[5] | Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027 |
[6] | Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565 |
[7] | Tong Li, Nitesh Mathur . Global well-posedness and asymptotic behavior of $ BV $ solutions to a system of balance laws arising in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 581-600. doi: 10.3934/nhm.2023025 |
[8] | Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773 |
[9] | Michael Herty, Adrian Fazekas, Giuseppe Visconti . A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13(2): 217-240. doi: 10.3934/nhm.2018010 |
[10] | Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011 |
[1] | T. Alperovich and A. Sopasakis, Modeling highway traffic with stochastic dynamics, J. Stat. Phys, 133 (2008), 1083-1105. |
[2] |
A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099
![]() |
[3] |
F. Berthelin, P. Degond, M. Delitala and M. Rascle, A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., 187 (2008), 185-220. doi: 10.1007/s00205-007-0061-9
![]() |
[4] |
S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467
![]() |
[5] |
G. Q. Chen, C. D. Levermore and T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830. doi: 10.1002/cpa.3160470602
![]() |
[6] |
R. M. Colombo, On a $2\times 2$ hyperbolic traffic flow model, Traffic flow—modelling and simulation. Math. Comput. Modelling, 35 (2002), 683-688. doi: 10.1016/S0895-7177(02)80029-2
![]() |
[7] |
R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2003), 708-721. doi: 10.1137/S0036139901393184
![]() |
[8] |
C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transp. Res. B, 28 (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7
![]() |
[9] |
C. F. Daganzo, The cell transmission model, part II: Network traffic, Transp. Res. B, 29 (1995), 79-93. doi: 10.1016/0191-2615(94)00022-R
![]() |
[10] |
C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transp. Res. B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z
![]() |
[11] |
C. F. Daganzo, In traffic flow, cellular automata = kinematic waves, Transp. Res. B, 40 (2006), 396-403. doi: 10.1016/j.trb.2005.05.004
![]() |
[12] | L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[13] | S. Fan, M. Herty and B. Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, in preparation, 2012. |
[14] | W. Fickett and W. C. Davis, "Detonation," Univ. of California Press, Berkeley, CA, 1979. |
[15] |
M. R. Flynn, A. R. Kasimov, J.-C. Nave, R. R. Rosales and B. Seibold, Self-sustained nonlinear waves in traffic flow, Phys. Rev. E, 79 (2009), 056113, 13 pp. doi: 10.1103/PhysRevE.79.056113
![]() |
[16] |
H. Greenberg, An analysis of traffic flow, Oper. Res., 7 (1959), 79-85. doi: 10.1287/opre.7.1.79
![]() |
[17] |
J. M. Greenberg, Extension and amplification of the Aw-Rascle model, SIAM J. Appl. Math., 62 (2001), 729-745. doi: 10.1137/S0036139900378657
![]() |
[18] |
J. M. Greenberg, Congestion redux, SIAM J. Appl. Math., 64 (2004), 1175-1185(electronic). doi: 10.1137/S0036139903431737
![]() |
[19] | B. D. Greenshields, A study of traffic capacity, Proceedings of the Highway Research Record, 14 (1935), 448-477. |
[20] | Website. http://www.trafficforum.org/stopandgo. |
[21] |
D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
![]() |
[22] | R. Herman and I. Prigogine, "Kinetic Theory of Vehicular Traffic," Elsevier, New York, 1971. |
[23] | R. Illner, A. Klar and T. Materne, Vlasov-Fokker-Planck models for multilane traffic flow, Commun. Math. Sci., 1 (2003), 1-12. |
[24] | A. R. Kasimov, R. R. Rosales, B. Seibold and M. R. Flynn, Existence of jamitons in hyperbolic relaxation systems with application to traffic flow, in preparation, 2013. |
[25] |
B. S. Kerner, Experimental features of self-organization in traffic flow, Phys. Rev. Lett., 81 (1998), 3797-3800. doi: 10.1103/PhysRevLett.81.3797
![]() |
[26] |
B. S. Kerner, S. L. Klenov and P. Konhäuser, Asymptotic theory of traffic jams, Phys. Rev. E, 56 (1997), 4200-4216. doi: 10.1103/PhysRevE.56.4200
![]() |
[27] |
B. S. Kerner and P. Konhäuser, Cluster effect in initially homogeneous traffic flow, Phys. Rev. E, 48 (1993), R2335-R2338. doi: 10.1103/PhysRevE.48.R2335
![]() |
[28] |
B. S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E, 50 (1994), 54-83. doi: 10.1103/PhysRevE.50.54
![]() |
[29] |
A. Klar and R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic, SIAM J. Appl. Math., 60 (2000), 1749-1766. doi: 10.1137/S0036139999356181
![]() |
[30] |
T. S. Komatsu and S. Sasa, Kink soliton characterizing traffic congestion, Phys. Rev. E, 52 (1995), 5574-5582. doi: 10.1103/PhysRevE.52.5574
![]() |
[31] |
D. A. Kurtze and D. C. Hong, Traffic jams, granular flow, and soliton selection, Phys. Rev. E, 52 (1995), 218-221. doi: 10.1103/PhysRevE.52.218
![]() |
[32] | J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45. |
[33] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-8629-1
![]() |
[34] |
T. Li, Global solutions and zero relaxation limit for a traffic flow model, SIAM J. Appl. Math., 61 (2000), 1042-1061(electronic). doi: 10.1137/S0036139999356788
![]() |
[35] | T. Li and H. Liu, Stability of a traffic flow model with nonconvex relaxation, Comm. Math. Sci., 3 (2005), 101-118. |
[36] |
T. Li and H. Liu, Critical thresholds in a relaxation system with resonance of characteristic speeds, Discrete Contin. Dyn. Syst., 24 (2009), 511-521. doi: 10.3934/dcds.2009.24.511
![]() |
[37] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[38] |
T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987), 153-175. doi: 10.1007/BF01210707
![]() |
[39] | A. Messmer and M. Papageorgiou, METANET: A macroscopic simulation program for motorway networks, Traffic Engrg. Control, 31 (1990), 466-470. |
[40] |
K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France, 2 (1992), 2221-2229. doi: 10.1051/jp1:1992277
![]() |
[41] | P. Nelson and A. Sopasakis, The Chapman-Enskog expansion: A novel approach to hierarchical extension of Lighthill-Whitham models, In A. Ceder, editor, Proceedings of the 14th International Symposium on Transportation and Trafic Theory, pages 51-79, Jerusalem, 1999. |
[42] |
G. F. Newell, Nonlinear effects in the dynamics of car following, Operations Research, 9 (1961), 209-229. doi: 10.1287/opre.9.2.209
![]() |
[43] |
G. F. Newell, A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks, Transp. Res. B, 27 (1993), 289-303. doi: 10.1016/0191-2615(93)90039-D
![]() |
[44] | Website. http://data.dot.state.mn.us/datatools. |
[45] | H. J. Payne, Models of freeway traffic and control, Proc. Simulation Council, 1 (1971), 51-61. |
[46] | H. J. Payne, FREEFLO: A macroscopic simulation model of freeway traffi, Transp. Res. Rec., 722 (1979), 68-77. |
[47] |
W. F. Phillips, A kinetic model for traffic flow with continuum implications, Transportation Planning and Technology, 5 (1979), 131-138. doi: 10.1080/03081067908717157
![]() |
[48] |
L. A. Pipes, An operational analysis of traffic dynamics, Journal of Applied Physics, 24 (1953), 274-281. doi: 10.1063/1.1721265
![]() |
[49] |
P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[50] | B. Seibold, R. R. Rosales, M. R. Flynn and A. R. Kasimov, Classification of traveling wave solutions of the inhomogeneous Aw-Rascle-Zhang model, in preparation, 2013. |
[51] |
F. Siebel and W. Mauser, On the fundamental diagram of traffic flow, SIAM J. Appl. Math., 66 (2006), 1150-1162(electronic). doi: 10.1137/050627113
![]() |
[52] |
Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, Traffic jams without bottlenecks - Experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001. doi: 10.1088/1367-2630/10/3/033001
![]() |
[53] | R. Underwood, Speed, volume, and density relationships: Quality and theory of traffic flow, Technical report, Yale Bureau of Highway Traffic, 1961. |
[54] | Website. http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. |
[55] |
P. Varaiya, Reducing highway congestion: An empirical approach, Eur. J. Control, 11 (2005), 301-309. doi: 10.3166/ejc.11.301-309
![]() |
[56] |
Y. Wang and M. Papageorgiou, Real-time freeway traffic state estimation based on extended Kalman filter: A general approach, Transp. Res. B, 39 (2005), 141-167. doi: 10.1016/j.trb.2004.03.003
![]() |
[57] |
J. G. Wardrop and G. Charlesworth, A method of estimating speed and flow of traffic from a moving vehicle, Proc. Instn. Civ. Engrs., 3 (1954), 158-171. doi: 10.1680/ipeds.1954.11628
![]() |
[58] |
G. B. Whitham, Some comments on wave propagation and shock wave structure with application to magnetohydrodynamics, Comm. Pure Appl. Math., 12 (1959), 113-158. doi: 10.1002/cpa.3160120107
![]() |
[59] | G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. xvi+636 pp. |
[60] |
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. B, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
![]() |
1. | Andrea Corli, Luisa Malaguti, 2021, Chapter 8, 978-3-030-61345-7, 167, 10.1007/978-3-030-61346-4_8 | |
2. | Kritika Gupta, M. S. Santhanam, Extreme events in Nagel–Schreckenberg model of traffic flow on complex networks, 2021, 230, 1951-6355, 3201, 10.1140/epjs/s11734-021-00016-0 | |
3. | Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, A statistical mechanics approach to macroscopic limits of car-following traffic dynamics, 2021, 137, 00207462, 103806, 10.1016/j.ijnonlinmec.2021.103806 | |
4. | Michael Herty, Andrea Tosin, Giuseppe Visconti, Mattia Zanella, 2021, Chapter 1, 978-3-030-66559-3, 1, 10.1007/978-3-030-66560-9_1 | |
5. | Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti, Kinetic models for traffic flow resulting in a reduced space of microscopic velocities, 2017, 10, 1937-5077, 823, 10.3934/krm.2017033 | |
6. | Martin Friesen, Hanno Gottschalk, Barbara Rüdiger, Antoine Tordeux, Spontaneous Wave Formation in Stochastic Self-Driven Particle Systems, 2021, 81, 0036-1399, 853, 10.1137/20M1315567 | |
7. | N. Malvin, S. R. Pudjaprasetya, Staggered Conservative Scheme for Simulating the Emergence of a Jamiton in a Phantom Traffic Jam, 2021, 19, 1348-8503, 128, 10.1007/s13177-020-00229-y | |
8. | Xiaoqian Gong, Alexander Keimer, On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version, 2023, 18, 1556-1801, 775, 10.3934/nhm.2023033 | |
9. | Andrea Corli, Haitao Fan, Hysteresis and stop-and-go waves in traffic flows, 2019, 29, 0218-2025, 2637, 10.1142/S0218202519500568 | |
10. | Antoine Tordeux, Guillaume Costeseque, Michael Herty, Armin Seyfried, From Traffic and Pedestrian Follow-the-Leader Models with Reaction Time to First Order Convection-Diffusion Flow Models, 2018, 78, 0036-1399, 63, 10.1137/16M110695X | |
11. | Huan Yu, Alexandre M. Bayen, Miroslav Krstic, Boundary Observer for Congested Freeway Traffic State Estimation via Aw-Rascle-Zhang model, 2019, 52, 24058963, 183, 10.1016/j.ifacol.2019.08.033 | |
12. | Rabie Ramadan, Rodolfo Ruben Rosales, Benjamin Seibold, 2021, Chapter 3, 978-3-030-66559-3, 35, 10.1007/978-3-030-66560-9_3 | |
13. | Andrea Tosin, Mattia Zanella, Uncertainty damping in kinetic traffic models by driver-assist controls, 2021, 11, 2156-8472, 681, 10.3934/mcrf.2021018 | |
14. | Martin Gugat, Exact Boundary Controllability for Free Traffic Flow with Lipschitz Continuous State, 2016, 2016, 1024-123X, 1, 10.1155/2016/2743251 | |
15. | Amaury Hayat, Boundary stabilization of 1D hyperbolic systems, 2021, 52, 13675788, 222, 10.1016/j.arcontrol.2021.10.009 | |
16. | Shimao Fan, Michael Herty, Benjamin Seibold, Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, 2014, 9, 1556-181X, 239, 10.3934/nhm.2014.9.239 | |
17. | Michael Herty, Gabriella Puppo, Giuseppe Visconti, 2021, Chapter 2, 978-3-030-66559-3, 17, 10.1007/978-3-030-66560-9_2 | |
18. | Boris Andreianov, Carlotta Donadello, Massimiliano D. Rosini, Entropy solutions for a two-phase transition model for vehicular traffic with metastable phase and time depending point constraint on the density flow, 2021, 28, 1021-9722, 10.1007/s00030-021-00689-5 | |
19. | Huan Yu, Miroslav Krstic, 2022, Chapter 8, 978-3-031-19345-3, 163, 10.1007/978-3-031-19346-0_8 | |
20. | Michael Herty, Gabriella Puppo, Giuseppe Visconti, Model of vehicle interactions with autonomous cars and its properties, 2023, 28, 1531-3492, 833, 10.3934/dcdsb.2022100 | |
21. | Krishna Kant, Advanced Persistent Threats in Autonomous Driving, 2020, 47, 0163-5999, 25, 10.1145/3397776.3397783 | |
22. | Paola Goatin, Macroscopic traffic flow modelling: from kinematic waves to autonomous vehicles, 2023, 14, 2038-0909, 1, 10.2478/caim-2023-0001 | |
23. | Andrea Corli, Lorenzo di Ruvo, Luisa Malaguti, Massimiliano D. Rosini, Traveling waves for degenerate diffusive equations on networks, 2017, 12, 1556-181X, 339, 10.3934/nhm.2017015 | |
24. | Stephan Gerster, Michael Herty, Elisa Iacomini, Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation, 2021, 18, 1551-0018, 4372, 10.3934/mbe.2021220 | |
25. | Boris Andreianov, Abraham Sylla, Existence analysis and numerical approximation for a second-order model of traffic with orderliness marker, 2022, 32, 0218-2025, 1295, 10.1142/S0218202522500294 | |
26. | Nour Khoudari, Benjamin Seibold, 2023, Chapter 38, 2730-633X, 10.1007/16618_2022_38 | |
27. | Michael Herty, Salissou Moutari, Giuseppe Visconti, Macroscopic Modeling of Multilane Motorways Using a Two-Dimensional Second-Order Model of Traffic Flow, 2018, 78, 0036-1399, 2252, 10.1137/17M1151821 | |
28. | Michael Herty, Elisa Iacomini, Uncertainty quantification in hierarchical vehicular flow models, 2022, 15, 1937-5093, 239, 10.3934/krm.2022006 | |
29. | Giuseppe Visconti, Michael Herty, Gabriella Puppo, Andrea Tosin, Multivalued Fundamental Diagrams of Traffic Flow in the Kinetic Fokker--Planck Limit, 2017, 15, 1540-3459, 1267, 10.1137/16M1087035 | |
30. | Kuang Huang, Xuan Di, Qiang Du, Xi Chen, Scalable traffic stability analysis in mixed-autonomy using continuum models, 2020, 111, 0968090X, 616, 10.1016/j.trc.2020.01.007 | |
31. | Paul Carter, Peter Leth Christiansen, Yuri B. Gaididei, Carlos Gorria, Björn Sandstede, Mads Peter Sørensen, Jens Starke, Multijam Solutions in Traffic Models with Velocity-Dependent Driver Strategies, 2014, 74, 0036-1399, 1895, 10.1137/130949427 | |
32. | Zhaobin Mo, Xu Chen, Xuan Di, Elisa Iacomini, Chiara Segala, Michael Herty, Mathieu Lauriere, A Game-Theoretic Framework for Generic Second-Order Traffic Flow Models Using Mean Field Games and Adversarial Inverse Reinforcement Learning, 2024, 0041-1655, 10.1287/trsc.2024.0532 | |
33. | Paola Goatin, Dissipation of Stop-and-Go Waves in Traffic Flows Using Controlled Vehicles: A Macroscopic Approach, 2024, 8, 2475-1456, 628, 10.1109/LCSYS.2024.3401092 | |
34. | Paola Goatin, Alessandra Rizzo, Instabilities in generic second-order traffic models with relaxation, 2024, 75, 0044-2275, 10.1007/s00033-024-02307-7 | |
35. | Liguo Zhang, Haoran Luan, Jingyuan Zhan, Stabilization of Stop-and-Go Waves in Vehicle Traffic Flow, 2024, 69, 0018-9286, 4583, 10.1109/TAC.2023.3337703 | |
36. | Saleh Baqer, Theodoros P. Horikis, Dimitrios J. Frantzeskakis, On Shallow Water Non-convex Dispersive Hydrodynamics: The Extended KdV Model, 2025, 2523-367X, 10.1007/s42286-025-00114-9 | |
37. | Jintao Li, Lu Zhu, Formation and construction of shock for p-system under degenerate conditions of finite or infinite orders, 2025, 258, 0362546X, 113824, 10.1016/j.na.2025.113824 | |
38. | Andrés Armando Mendiburu Zevallos, 2025, Chapter 7, 978-3-031-83574-2, 245, 10.1007/978-3-031-83575-9_7 |