Numerical discretization of Hamilton--Jacobi equations on networks

  • Received: 01 November 2012 Revised: 01 June 2013
  • Primary: 90B20, 35L50; Secondary: 35F21.

  • We discuss a numerical discretization of Hamilton--Jacobi equations on networks. The latter arise for example as reformulation of the Lighthill--Whitham--Richards traffic flow model. We present coupling conditions for the Hamilton--Jacobi equations and derive a suitable numerical algorithm. Numerical computations of travel times in a round-about are given.

    Citation: Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks[J]. Networks and Heterogeneous Media, 2013, 8(3): 685-705. doi: 10.3934/nhm.2013.8.685

    Related Papers:

    [1] Simone Göttlich, Ute Ziegler, Michael Herty . Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8(3): 685-705. doi: 10.3934/nhm.2013.8.685
    [2] Carlos F. Daganzo . On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1(4): 601-619. doi: 10.3934/nhm.2006.1.601
    [3] Anya Désilles . Viability approach to Hamilton-Jacobi-Moskowitz problem involving variable regulation parameters. Networks and Heterogeneous Media, 2013, 8(3): 707-726. doi: 10.3934/nhm.2013.8.707
    [4] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [5] Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727
    [6] Renato Iturriaga, Héctor Sánchez Morgado . The Lax-Oleinik semigroup on graphs. Networks and Heterogeneous Media, 2017, 12(4): 643-662. doi: 10.3934/nhm.2017026
    [7] Alberto Bressan, Yunho Hong . Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2(2): 313-331. doi: 10.3934/nhm.2007.2.313
    [8] Filippo Santambrogio . A modest proposal for MFG with density constraints. Networks and Heterogeneous Media, 2012, 7(2): 337-347. doi: 10.3934/nhm.2012.7.337
    [9] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [10] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
  • We discuss a numerical discretization of Hamilton--Jacobi equations on networks. The latter arise for example as reformulation of the Lighthill--Whitham--Richards traffic flow model. We present coupling conditions for the Hamilton--Jacobi equations and derive a suitable numerical algorithm. Numerical computations of travel times in a round-about are given.


    [1] A. M. Bayen and C. G. Claudel, Convex formulations of data assimilation problems for a class of Hamilton-Jacobi equations, SIAM J. Control Optim., 49 (2011), 383-402. doi: 10.1137/090778754
    [2] A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145
    [3] G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks, Netw. Heterog. Media, 1 (2006), 57-84. doi: 10.3934/nhm.2006.1.57
    [4] G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM J. Appl. Dyn. Syst., 7 (2008), 510-531. doi: 10.1137/070697768
    [5] Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 599-630. doi: 10.3934/dcdsb.2005.5.599
    [6] G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
    [7] R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Non-unique flows in macroscopic first-order intersection models, Transportation Res. Part B, 46 (2012), 343-359. doi: 10.1016/j.trb.2011.10.011
    [8] C. F. Daganzo, A variational formulation of kinematic waves: Basic theory and complex boundary conditions, Transportation Res. Part B, 39 (2005), 187-196. doi: 10.1016/j.trb.2004.04.003
    [9] C. F. Daganzo, The cell transmission model, part II: Network traffic, Transportation Res. Part B, 29 (1995), 79-93. doi: 10.1016/0191-2615(94)00022-R
    [10] C. F. Daganzo, On the variational theory of traffic flow: Well-posedness, duality and applications, Networks and Heterogeneous Media, 1 (2006), 601-619. doi: 10.3934/nhm.2006.1.601
    [11] G. B. Dantzig, "Linear Programming and Extensions," Princeton University Press, Princeton, N.J. 1963 xvi+625 pp.
    [12] C. D'Apice, R. Manzo and B. Piccoli, A fluid dynamic model for telecommunication networks with sources and destinations, SIAM J. Appl. Math., 68 (2008), 981-1003. doi: 10.1137/060674132
    [13] C. D'Apice, R. Manzo and L. Rarità, Splitting of traffic flows to control congestion in special events, Int. J. Math. Math. Sci., (2011), Art. ID 563171, 18 pages. doi: 10.1155/2011/563171
    [14] G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections, Transportation Res. Part B: Methodological, 45 (2011), 903-922 .
    [15] M. Garavello and B. Piccoli, "Traffic Flow on Networks," AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. xvi+243 pp.
    [16] M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283.
    [17] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, (Russian) Mat. Sb. (N. S.), 47 (1959), 271-306.
    [18] B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks, Netw. Heterog. Media, 2 (2007), 227-253. doi: 10.3934/nhm.2007.2.227
    [19] M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM Journal on Scientific Computing, 25 (2003), 1066-1087. doi: 10.1137/S106482750241459X
    [20] M. Herty and M. Rascle, Coupling conditions for a class of "second-order'' models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616. doi: 10.1137/05062617X
    [21] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
    [22] C. Imbert, R. Monneau and H. Zidnani, A Hamilton-Jacobi approach to junction problems and application to traffic flow, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166. doi: 10.1051/cocv/2012002
    [23] A. Kurganov and E. Tadmor, New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys., 160 (2000), 720-742. doi: 10.1006/jcph.2000.6485
    [24] J.-P. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, Transportation Planning Applied Optimization, 64 (2004), 119-140. doi: 10.1007/0-306-48220-7_8
    [25] R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-8629-1
    [26] M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Royal Society London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [27] Y. Makigami, G. F. Newell and R. Rothery, Three-dimensional representation of traffic flow, Transportation Science, 5 (1971), 302-313. doi: 10.1287/trsc.5.3.302
    [28] P. Mazarè, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model, Transportation Res. Part B: Methodological, 45 (2011), 1727-1748.
    [29] K. Moskowitz, Discussion of freeway level of service as influenced by volume and capacity characteristics, Highway Research Record, 99 (1965), 43-44.
    [30] G. F. Newell, A simplified theory of kinematic waves in highway traffic: (I) general theory; (ii) queuing at freeway bottlenecks; (iii) multi-destination flow, Transportation Res. Part B, 27 (1993), 281-313.
    [31] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
  • This article has been cited by:

    1. Guillaume Costeseque, Jean-Patrick Lebacque, Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations, 2014, 7, 1937-1179, 411, 10.3934/dcdss.2014.7.411
    2. Jesús Angulo, 2015, Chapter 43, 978-3-319-18719-8, 509, 10.1007/978-3-319-18720-4_43
    3. Guillaume Costeseque, Jean-Patrick Lebacque, Régis Monneau, A convergent scheme for Hamilton–Jacobi equations on a junction: application to traffic, 2015, 129, 0029-599X, 405, 10.1007/s00211-014-0643-z
    4. Toru Seo, Alexandre M. Bayen, Takahiko Kusakabe, Yasuo Asakura, Traffic state estimation on highway: A comprehensive survey, 2017, 43, 13675788, 128, 10.1016/j.arcontrol.2017.03.005
    5. Simone Göttlich, Ute Ziegler, Traffic light control: A case study, 2014, 7, 1937-1179, 483, 10.3934/dcdss.2014.7.483
    6. Linfeng Zhang, Hongfei Jia, Nicolas Forcadel, Bin Ran, Junction Conditions for Hamilton–Jacobi Equations for Solving Real-Time Traffic Flow Problems, 2019, 7, 2169-3536, 114334, 10.1109/ACCESS.2019.2935535
    7. Mike Pereira, Pinar Boyraz Baykas, Balázs Kulcsár, Annika Lang, Parameter and density estimation from real-world traffic data: A kinetic compartmental approach, 2022, 155, 01912615, 210, 10.1016/j.trb.2021.11.006
    8. Simone Göttlich, Oliver Kolb, Sebastian Kühn, Optimization for a special class of traffic flow models: Combinatorial and continuous approaches, 2014, 9, 1556-181X, 315, 10.3934/nhm.2014.9.315
    9. Jessica Guerand, Marwa Koumaiha, Error estimates for a finite difference scheme associated with Hamilton–Jacobi equations on a junction, 2019, 142, 0029-599X, 525, 10.1007/s00211-019-01043-9
    10. Mourad Haddioui, Youssef Qaraai, Saleh Bouarafa, Said Agoujil, Abderrahman Bouhamidi, A macroscopic traffic flow modelling and collision avoidance using B-spline and Physics-Informed Neural Network approaches, 2024, 5, 26666030, 196, 10.1016/j.ijin.2024.04.003
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4423) PDF downloads(247) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog