Long time average of mean field games

  • Received: 01 November 2011 Revised: 01 March 2012
  • Primary: 35B40; Secondary: 35K55.

  • We consider a model of mean field games system defined on a time interval $[0,T]$ and investigate its asymptotic behavior as the horizon $T$ tends to infinity. We show that the system, rescaled in a suitable way, converges to a stationary ergodic mean field game. The convergence holds with exponential rate and relies on energy estimates and the Hamiltonian structure of the system.

    Citation: Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games[J]. Networks and Heterogeneous Media, 2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279

    Related Papers:

    [1] Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta . Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7(2): 279-301. doi: 10.3934/nhm.2012.7.279
    [2] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [3] Fabio Camilli, Francisco Silva . A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7(2): 263-277. doi: 10.3934/nhm.2012.7.263
    [4] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [5] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [6] Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado . A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7(2): 303-314. doi: 10.3934/nhm.2012.7.303
    [7] Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou . A class of infinite horizon mean field games on networks. Networks and Heterogeneous Media, 2019, 14(3): 537-566. doi: 10.3934/nhm.2019021
    [8] Yves Achdou, Victor Perez . Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 2012, 7(2): 197-217. doi: 10.3934/nhm.2012.7.197
    [9] Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai . The selection problem for some first-order stationary Mean-field games. Networks and Heterogeneous Media, 2020, 15(4): 681-710. doi: 10.3934/nhm.2020019
    [10] Michael Herty, Lorenzo Pareschi, Giuseppe Visconti . Mean field models for large data–clustering problems. Networks and Heterogeneous Media, 2020, 15(3): 463-487. doi: 10.3934/nhm.2020027
  • We consider a model of mean field games system defined on a time interval $[0,T]$ and investigate its asymptotic behavior as the horizon $T$ tends to infinity. We show that the system, rescaled in a suitable way, converges to a stationary ergodic mean field game. The convergence holds with exponential rate and relies on energy estimates and the Hamiltonian structure of the system.


    [1] Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162. doi: 10.1137/090758477
    [2] Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem, SIAM J. Control Opt., 50 (2012), 77-109. doi: 10.1137/100790069
    [3] M. Arisawa and P.-L. Lions, On ergodic stochastic control, Comm. Partial Differential Equations, 23 (1998), 2187-2217. doi: 10.1080/03605309808821413
    [4] G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 32 (2001), 1311-1323. doi: 10.1137/S0036141000369344
    [5] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375. doi: 10.1017/S0308210500018631
    [6] D. A. Gomes, J. Mohr and R. Souza, Discrete time, finite state space mean field games, J. Math. Pures Appl. (9), 93 (2010), 308-328.
    [7] preprint.
    [8] preprint.
    [9] preprint.
    [10] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence R.I., 1967.
    [11] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625. doi: 10.1016/j.crma.2006.09.019
    [12] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684. doi: 10.1016/j.crma.2006.09.018
    [13] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
    [14] J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory, preprint, 2008.
    [15] Available from: http://www.college-de-france.fr.
    [16] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4), 177 (1999), 143-172. doi: 10.1007/BF02505907
  • This article has been cited by:

    1. Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado, Time-Dependent Mean-Field Games in the Subquadratic Case, 2015, 40, 0360-5302, 40, 10.1080/03605302.2014.903574
    2. René Carmona, François Delarue, 2018, Chapter 2, 978-3-319-56435-7, 107, 10.1007/978-3-319-56436-4_2
    3. Dario Pighin, The turnpike property in semilinear control, 2021, 27, 1292-8119, 48, 10.1051/cocv/2021036
    4. César Barilla, Guillaume Carlier, Jean-Michel Lasry, A mean field game model for the evolution of cities, 2021, 8, 2164-6074, 299, 10.3934/jdg.2021017
    5. Annalisa Cesaroni, Nicolas Dirr, Claudio Marchi, Homogenization of a Mean Field Game System in the Small Noise Limit, 2016, 48, 0036-1410, 2701, 10.1137/16M1063459
    6. Anastasia Karakozova, P. Akimov, N. Vatin, A. Tusnin, A. Doroshenko, On the passage of the wave along the rod, 2021, 263, 2267-1242, 03004, 10.1051/e3sconf/202126303004
    7. Alessandro Goffi, Transport equations with nonlocal diffusion and applications to Hamilton–Jacobi equations, 2021, 21, 1424-3199, 4261, 10.1007/s00028-021-00720-3
    8. Martin Gugat, Martin Lazar, Turnpike properties for partially uncontrollable systems, 2023, 149, 00051098, 110844, 10.1016/j.automatica.2022.110844
    9. David Evangelista, Diogo A. Gomes, Levon Nurbekyan, 2017, Radially symmetric mean-field games with congestion, 978-1-5090-2873-3, 3158, 10.1109/CDC.2017.8264121
    10. Philip Jameson Graber, Charafeddine Mouzouni, 2018, Chapter 5, 978-3-030-01946-4, 93, 10.1007/978-3-030-01947-1_5
    11. José A. Carrillo, Edgard A. Pimentel, Vardan K. Voskanyan, On a mean field optimal control problem, 2020, 199, 0362546X, 112039, 10.1016/j.na.2020.112039
    12. Alessio Porretta, Enrique Zuazua, Long Time versus Steady State Optimal Control, 2013, 51, 0363-0129, 4242, 10.1137/130907239
    13. Mehmet Ersoy, Eduard Feireisl, Enrique Zuazua, Sensitivity analysis of1−dsteady forced scalar conservation laws, 2013, 254, 00220396, 3817, 10.1016/j.jde.2013.01.041
    14. Yves Achdou, Fabio Camilli, Italo Capuzzo-Dolcetta, Mean Field Games: Convergence of a Finite Difference Method, 2013, 51, 0036-1429, 2585, 10.1137/120882421
    15. Pierre Cardaliaguet, Cristian Mendico, Ergodic behavior of control and mean field games problems depending on acceleration, 2021, 203, 0362546X, 112185, 10.1016/j.na.2020.112185
    16. Fernando Farroni, Luigi Greco, Gioconda Moscariello, Gabriella Zecca, Nonlinear evolution problems with singular coefficients in the lower order terms, 2021, 28, 1021-9722, 10.1007/s00030-021-00698-4
    17. Indranil Chowdhury, Olav Ersland, Espen R. Jakobsen, On Numerical Approximations of Fractional and Nonlocal Mean Field Games, 2022, 1615-3375, 10.1007/s10208-022-09572-w
    18. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long Time Average of Mean Field Games with a Nonlocal Coupling, 2013, 51, 0363-0129, 3558, 10.1137/120904184
    19. Diogo A. Gomes, Edgard A. Pimentel, Vardan Voskanyan, 2016, Chapter 6, 978-3-319-38932-5, 77, 10.1007/978-3-319-38934-9_6
    20. Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1
    21. Marco Cirant, Alessandro Goffi, Maximal
    Lq
    -Regularity for Parabolic Hamilton–Jacobi Equations and Applications to Mean Field Games, 2021, 7, 2524-5317, 10.1007/s40818-021-00109-y
    22. René Carmona, Christy V. Graves, Jet Lag Recovery: Synchronization of Circadian Oscillators as a Mean Field Game, 2020, 10, 2153-0785, 79, 10.1007/s13235-019-00315-1
    23. Berenice Anne Neumann, Stationary Equilibria of Mean Field Games with Finite State and Action Space, 2020, 10, 2153-0785, 845, 10.1007/s13235-019-00345-9
    24. MATT BARKER, PIERRE DEGOND, MARIE-THERESE WOLFRAM, Comparing the best-reply strategy and mean-field games: The stationary case, 2022, 33, 0956-7925, 79, 10.1017/S0956792520000376
    25. Piermarco Cannarsa, Wei Cheng, Cristian Mendico, Kaizhi Wang, Weak KAM Approach to First-Order Mean Field Games with State Constraints, 2021, 1040-7294, 10.1007/s10884-021-10071-9
    26. Fernando Farroni, Gioconda Moscariello, A nonlinear parabolic equation with drift term, 2018, 177, 0362546X, 397, 10.1016/j.na.2018.04.021
    27. Julio Backhoff, Giovanni Conforti, Ivan Gentil, Christian Léonard, The mean field Schrödinger problem: ergodic behavior, entropy estimates and functional inequalities, 2020, 178, 0178-8051, 475, 10.1007/s00440-020-00977-8
    28. Aimé Lachapelle, Jean-Michel Lasry, Charles-Albert Lehalle, Pierre-Louis Lions, Efficiency of the price formation process in presence of high frequency participants: a mean field game analysis, 2016, 10, 1862-9679, 223, 10.1007/s11579-015-0157-1
    29. P. Jameson Graber, Alpár R. Mészáros, Sobolev regularity for first order mean field games, 2018, 35, 0294-1449, 1557, 10.1016/j.anihpc.2018.01.002
    30. René Carmona, François Delarue, 2018, Chapter 4, 978-3-319-56435-7, 239, 10.1007/978-3-319-56436-4_4
    31. Alpár Richárd Mészáros, Francisco J. Silva, On the Variational Formulation of Some Stationary Second-Order Mean Field Games Systems, 2018, 50, 0036-1410, 1255, 10.1137/17M1125960
    32. Marco Cirant, Alessio Porretta, G. Buttazzo, E. Casas, L. de Teresa, R. Glowinski, G. Leugering, E. Trélat, X. Zhang, Long time behavior and turnpike solutions in mildly non-monotone mean field games, 2021, 27, 1292-8119, 86, 10.1051/cocv/2021077
    33. P. Jameson Graber, Vincenzo Ignazio, Ariel Neufeld, Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule, 2021, 148, 00217824, 150, 10.1016/j.matpur.2021.02.002
    34. Simone Cacace, Fabio Camilli, Alessandro Goffi, A policy iteration method for mean field games, 2021, 27, 1292-8119, 85, 10.1051/cocv/2021081
    35. Olivier Guéant, Existence and Uniqueness Result for Mean Field Games with Congestion Effect on Graphs, 2015, 72, 0095-4616, 291, 10.1007/s00245-014-9280-2
    36. Martino Bardi, Fabio S. Priuli, 2013, LQG mean-field games with ergodic cost, 978-1-4673-5717-3, 2493, 10.1109/CDC.2013.6760255
    37. Pierre Cardaliaguet, P. Jameson Graber, Mean field games systems of first order, 2015, 21, 1292-8119, 690, 10.1051/cocv/2014044
    38. Yves Achdou, 2013, Chapter 1, 978-3-642-36432-7, 1, 10.1007/978-3-642-36433-4_1
    39. Marco Cirant, A generalization of the Hopf–Cole transformation for stationary Mean-Field Games systems, 2015, 353, 1631073X, 807, 10.1016/j.crma.2015.06.016
    40. Diogo A. Gomes, Stefania Patrizi, Vardan Voskanyan, On the existence of classical solutions for stationary extended mean field games, 2014, 99, 0362546X, 49, 10.1016/j.na.2013.12.016
    41. Marco Cirant, On the existence of oscillating solutions in non-monotone Mean-Field Games, 2019, 266, 00220396, 8067, 10.1016/j.jde.2018.12.025
    42. Charles Bertucci, Optimal stopping in mean field games, an obstacle problem approach, 2018, 120, 00217824, 165, 10.1016/j.matpur.2017.09.016
    43. Diogo A. Gomes, João Saúde, Mean Field Games Models—A Brief Survey, 2014, 4, 2153-0785, 110, 10.1007/s13235-013-0099-2
    44. Alessio Porretta, Enrique Zuazua, 2016, Chapter 5, 978-3-319-39091-8, 67, 10.1007/978-3-319-39092-5_5
    45. Charles Bertucci, Monotone solutions for mean field games master equations: finite state space and optimal stopping, 2021, 8, 2270-518X, 1099, 10.5802/jep.167
    46. Marco Masoero, On the long time convergence of potential MFG, 2019, 26, 1021-9722, 10.1007/s00030-019-0560-z
    47. Wilfrid Gangbo, Andrzej Świech, Optimal transport and large number of particles, 2014, 34, 1553-5231, 1397, 10.3934/dcds.2014.34.1397
    48. Federica Dragoni, Ermal Feleqi, Ergodic mean field games with Hörmander diffusions, 2018, 57, 0944-2669, 10.1007/s00526-018-1391-1
    49. Yves Achdou, Mathieu Laurière, 2020, Chapter 4, 978-3-030-59836-5, 249, 10.1007/978-3-030-59837-2_4
    50. Alessio Porretta, On the Planning Problem for the Mean Field Games System, 2014, 4, 2153-0785, 231, 10.1007/s13235-013-0080-0
    51. Haoya Li, Yuwei Fan, Lexing Ying, A simple multiscale method for mean field games, 2021, 439, 00219991, 110385, 10.1016/j.jcp.2021.110385
    52. Lucio Boccardo, Luigi Orsina, Alessio Porretta, Strongly coupled elliptic equations related to mean-field games systems, 2016, 261, 00220396, 1796, 10.1016/j.jde.2016.04.018
    53. Rita Ferreira, Diogo Gomes, Existence of Weak Solutions to Stationary Mean-Field Games through Variational Inequalities, 2018, 50, 0036-1410, 5969, 10.1137/16M1106705
    54. Pierre Cardaliaguet, Marco Masoero, Weak KAM theory for potential MFG, 2020, 268, 00220396, 3255, 10.1016/j.jde.2019.09.060
    55. Alessio Porretta, Weak Solutions to Fokker–Planck Equations and Mean Field Games, 2015, 216, 0003-9527, 1, 10.1007/s00205-014-0799-9
    56. Diogo A. Gomes, João Saúde, Numerical Methods for Finite-State Mean-Field Games Satisfying a Monotonicity Condition, 2021, 83, 0095-4616, 51, 10.1007/s00245-018-9510-0
    57. Jie Du, S.C. Wong, Chi-Wang Shu, Mengping Zhang, Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition, 2015, 79, 01912615, 189, 10.1016/j.trb.2015.06.005
    58. Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado, On some singular mean-field games, 2021, 8, 2164-6066, 445, 10.3934/jdg.2021006
    59. Pêdra D. S. Andrade, Edgard A. Pimentel, Stationary fully nonlinear mean-field games, 2021, 145, 0021-7670, 335, 10.1007/s11854-021-0193-0
    60. Ari Arapostathis, 2012, Time asymptotic behavior of the HJB equation associated with a class of mean-field games, 978-1-4673-4539-2, 449, 10.1109/Allerton.2012.6483252
    61. René Carmona, François Delarue, 2018, Chapter 1, 978-3-319-56435-7, 3, 10.1007/978-3-319-56436-4_1
    62. Piotr Więcek, Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces, 2020, 10, 2153-0785, 222, 10.1007/s13235-019-00296-1
    63. René Carmona, François Delarue, 2018, Chapter 3, 978-3-319-56435-7, 155, 10.1007/978-3-319-56436-4_3
    64. Charles Bertucci, Jean-Michel Lasry, Pierre-Louis Lions, Some remarks on mean field games, 2019, 44, 0360-5302, 205, 10.1080/03605302.2018.1542438
    65. Marco Cirant, Multi-population Mean Field Games systems with Neumann boundary conditions, 2015, 103, 00217824, 1294, 10.1016/j.matpur.2014.10.013
    66. Diogo A. Gomes, Edgard A. Pimentel, 2015, Chapter 15, 978-3-319-16117-4, 291, 10.1007/978-3-319-16118-1_15
    67. Rita Ferreira, Diogo A. Gomes, On the convergence of finite state mean-field games through Γ-convergence, 2014, 418, 0022247X, 211, 10.1016/j.jmaa.2014.02.044
    68. Ari Arapostathis, Anup Biswas, Johnson Carroll, On solutions of mean field games with ergodic cost, 2017, 107, 00217824, 205, 10.1016/j.matpur.2016.06.004
    69. Pierre Cardaliaguet, Alessio Porretta, Long time behavior of the master equation in mean field game theory, 2019, 12, 1948-206X, 1397, 10.2140/apde.2019.12.1397
    70. René Carmona, François Delarue, 2018, Chapter 5, 978-3-319-56435-7, 323, 10.1007/978-3-319-56436-4_5
    71. Alessio Porretta, On the weak theory for mean field games systems, 2017, 10, 1972-6724, 411, 10.1007/s40574-016-0105-x
    72. Alpár Richárd Mészáros, Francisco J. Silva, A variational approach to second order mean field games with density constraints: The stationary case, 2015, 104, 00217824, 1135, 10.1016/j.matpur.2015.07.008
    73. Fernando Farroni, Asymptotic stability estimates for some evolution problems with singular convection field, 2022, 71, 0035-5038, 441, 10.1007/s11587-020-00537-1
    74. Borjan Geshkovski, Enrique Zuazua, Turnpike in optimal control of PDEs, ResNets, and beyond, 2022, 31, 0962-4929, 135, 10.1017/S0962492922000046
    75. Martin Burger, Luis Caffarelli, Peter A. Markowich, Partial differential equation models in the socio-economic sciences, 2014, 372, 1364-503X, 20130406, 10.1098/rsta.2013.0406
    76. Marco Cirant, Stationary focusing mean-field games, 2016, 41, 0360-5302, 1324, 10.1080/03605302.2016.1192647
    77. P. Jameson Graber, Alain Bensoussan, Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games, 2018, 77, 0095-4616, 47, 10.1007/s00245-016-9366-0
    78. Diogo A. Gomes, Hiroyoshi Mitake, Existence for stationary mean-field games with congestion and quadratic Hamiltonians, 2015, 22, 1021-9722, 1897, 10.1007/s00030-015-0349-7
    79. Yves Achdou, Martino Bardi, Marco Cirant, Mean field games models of segregation, 2017, 27, 0218-2025, 75, 10.1142/S0218202517400036
    80. Enrique Zuazua, Large time control and turnpike properties for wave equations, 2017, 44, 13675788, 199, 10.1016/j.arcontrol.2017.04.002
    81. Alessio Porretta, On the planning problem for a class of Mean Field Games, 2013, 351, 1631073X, 457, 10.1016/j.crma.2013.07.004
    82. René Carmona, François Delarue, 2018, Chapter 7, 978-3-319-56437-1, 619, 10.1007/978-3-319-58920-6_7
    83. Alberto Chiarini, Giovanni Conforti, Giacomo Greco, Zhenjie Ren, Entropic turnpike estimates for the kinetic Schrödinger problem, 2022, 27, 1083-6489, 10.1214/22-EJP850
    84. Yves Achdou, Mathieu Laurière, On the system of partial differential equations arising in mean field type control, 2015, 35, 1553-5231, 3879, 10.3934/dcds.2015.35.3879
    85. P. Cardaliaguet, Long Time Average of First Order Mean Field Games and Weak KAM Theory, 2013, 3, 2153-0785, 473, 10.1007/s13235-013-0091-x
    86. Charafeddine Mouzouni, On Quasi-stationary Mean Field Games Models, 2020, 81, 0095-4616, 655, 10.1007/s00245-018-9484-y
    87. René Carmona, François Delarue, 2018, Chapter 6, 978-3-319-56435-7, 447, 10.1007/978-3-319-56436-4_6
    88. René Carmona, François Delarue, 2018, Chapter 7, 978-3-319-56435-7, 541, 10.1007/978-3-319-56436-4_7
    89. Martino Bardi, Fabio S. Priuli, Linear-Quadratic $N$-person and Mean-Field Games with Ergodic Cost, 2014, 52, 0363-0129, 3022, 10.1137/140951795
    90. L. M. Bricen͂o-Arias, D. Kalise, F. J. Silva, Proximal Methods for Stationary Mean Field Games with Local Couplings, 2018, 56, 0363-0129, 801, 10.1137/16M1095615
    91. Diogo A. Gomes, Edgard Pimentel, Héctor Sánchez-Morgado, Time-dependent mean-field games in the superquadratic case, 2016, 22, 1292-8119, 562, 10.1051/cocv/2015029
    92. Rita Ferreira, Diogo Gomes, Xianjin Yang, Two-scale homogenization of a stationary mean-field game, 2020, 26, 1292-8119, 17, 10.1051/cocv/2020002
    93. Joshua Sin, John W. Bonnes, Luke C. Brown, David M. Ambrose, Existence and computation of stationary solutions for congestion-type mean field games via bifurcation theory and forward-forward problems, 2023, 0, 2164-6066, 0, 10.3934/jdg.2023014
    94. Giovanni Conforti, Coupling by reflection for controlled diffusion processes: Turnpike property and large time behavior of Hamilton–Jacobi–Bellman equations, 2023, 33, 1050-5164, 10.1214/22-AAP1927
    95. Nikiforos Mimikos-Stamatopoulos, Sebastian Munoz, Regularity and Long Time Behavior of One-Dimensional First-Order Mean Field Games and the Planning Problem, 2024, 56, 0036-1410, 43, 10.1137/23M1547779
    96. Jinyan Guo, Chenchen Mou, Xianjin Yang, Chao Zhou, Decoding mean field games from population and environment observations by Gaussian processes, 2024, 508, 00219991, 112978, 10.1016/j.jcp.2024.112978
    97. Luis M. Briceño-Arias, Francisco J. Silva, Xianjin Yang, Forward-Backward Algorithm for Functions with Locally Lipschitz Gradient: Applications to Mean Field Games, 2024, 32, 1877-0533, 10.1007/s11228-024-00719-1
    98. Tigran Bakaryan, Giuseppe Di Fazio, Diogo A. Gomes,
    C1,α
    regularity for stationary mean-field games with logarithmic coupling, 2024, 31, 1021-9722, 10.1007/s00030-024-00976-x
    99. Martino Bardi, Hicham Kouhkouh, Long-Time Behavior of Deterministic Mean Field Games with Nonmonotone Interactions, 2024, 56, 0036-1410, 5079, 10.1137/23M1608100
    100. René A. Carmona, Claire Zeng, Leveraging the Turnpike Effect for Mean Field Games Numerics, 2024, 3, 2694-085X, 389, 10.1109/OJCSYS.2024.3419642
    101. Erhan Bayraktar, Ali Devran Kara, Infinite Horizon Average Cost Optimality Criteria for Mean-Field Control, 2024, 62, 0363-0129, 2776, 10.1137/23M1603649
    102. P. Jameson Graber, Remarks on potential mean field games, 2025, 12, 2522-0144, 10.1007/s40687-024-00494-3
    103. Christoph Knochenhauer, Berenice Anne Neumann, Long-Run Behavior and Convergence of Dynamic Mean Field Equilibria, 2024, 2153-0785, 10.1007/s13235-024-00604-4
    104. N. V. Trusov, The Group Behavioral Characteristics in a Mean Field Game Model with a Turnpike Effect, 2025, 46, 1995-0802, 341, 10.1134/S1995080224608002
    105. Marco Cirant, Fanze Kong, Juncheng Wei, Xiaoyu Zeng, Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost, 2025, 198, 00217824, 103687, 10.1016/j.matpur.2025.103687
    106. Hongyu Liu, Catharine W. K. Lo, Shen Zhang, Decoding a mean field game by the Cauchy data around its unknown stationary states, 2025, 111, 0024-6107, 10.1112/jlms.70173
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7057) PDF downloads(379) Cited by(105)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog