Critical thresholds in a quasilinear hyperbolic model of blood flow

  • Received: 01 November 2008 Revised: 01 May 2009
  • Primary: 35L60, 35L67; Secondary: 35L45, 76L05.

  • Critical threshold phenomena in a one dimensional quasi-linear hyperbolic model of blood flow with viscous damping are investigated. We prove global in time regularity and finite time singularity formation of solutions simultaneously by showing the critical threshold phenomena associated with the blood flow model. New results are obtained showing that the class of data that leads to global smooth solutions includes the data with negative initial Riemann invariant slopes and that the magnitude of the negative slope is not necessarily small, but it is determined by the magnitude of the viscous damping. For the data that leads to shock formation, we show that shock formation is delayed due to viscous damping.

    Citation: Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow[J]. Networks and Heterogeneous Media, 2009, 4(3): 527-536. doi: 10.3934/nhm.2009.4.527

    Related Papers:

    [1] Tong Li, Sunčica Čanić . Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4(3): 527-536. doi: 10.3934/nhm.2009.4.527
    [2] Tong Li, Kun Zhao . Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6(4): 625-646. doi: 10.3934/nhm.2011.6.625
    [3] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [4] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [5] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [6] Xavier Litrico, Vincent Fromion . Modal decomposition of linearized open channel flow. Networks and Heterogeneous Media, 2009, 4(2): 325-357. doi: 10.3934/nhm.2009.4.325
    [7] Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99
    [8] Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée . A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11(1): 69-87. doi: 10.3934/nhm.2016.11.69
    [9] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [10] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
  • Critical threshold phenomena in a one dimensional quasi-linear hyperbolic model of blood flow with viscous damping are investigated. We prove global in time regularity and finite time singularity formation of solutions simultaneously by showing the critical threshold phenomena associated with the blood flow model. New results are obtained showing that the class of data that leads to global smooth solutions includes the data with negative initial Riemann invariant slopes and that the magnitude of the negative slope is not necessarily small, but it is determined by the magnitude of the viscous damping. For the data that leads to shock formation, we show that shock formation is delayed due to viscous damping.


  • This article has been cited by:

    1. Xiaoyu Fu, V.D. Sharma, Cauchy problem for quasilinear hyperbolic systems of shallow water equations, 2013, 92, 0003-6811, 2309, 10.1080/00036811.2012.734376
    2. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    3. Tong Li, Kun Zhao, On a quasilinear hyperbolic system in blood flow modeling, 2011, 16, 1553-524X, 333, 10.3934/dcdsb.2011.16.333
    4. Chao He, Junmin Li, Robust boundary iterative learning control for a class of nonlinear hyperbolic systems with unmatched uncertainties and disturbance, 2018, 321, 09252312, 332, 10.1016/j.neucom.2018.09.020
    5. Tong Li, Kun Zhao, Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model, 2011, 6, 1556-181X, 625, 10.3934/nhm.2011.6.625
    6. Jing Wei, Huancheng Yao, Changjiang Zhu, Asymptotic stability of rarefaction wave for a blood flow model, 2023, 0170-4214, 10.1002/mma.9010
    7. Nikolaos Bekiaris-Liberis, On 1-D PDE-Based Cardiovascular Flow Bottleneck Modeling and Analysis: A Vehicular Traffic Flow-Inspired Approach, 2023, 68, 0018-9286, 3728, 10.1109/TAC.2022.3195148
    8. Nangao Zhang, Changjiang Zhu, Limei Zhu, Convergence to Nonlinear Diffusion Waves for Solutions of Blood Flow Model, 2024, 56, 0036-1410, 6768, 10.1137/23M1586367
    9. Nangao Zhang, Xiaofeng Zhao, Changjiang Zhu, Asymptotic behavior of solutions to 1D blood flow model on the half-space, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024170
    10. Pablo J. Blanco, Lucas O. Müller, One‐Dimensional Blood Flow Modeling in the Cardiovascular System. From the Conventional Physiological Setting to Real‐Life Hemodynamics, 2025, 41, 2040-7939, 10.1002/cnm.70020
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3958) PDF downloads(66) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog