On the control volume finite element methods and their applications to multiphase flow

  • Received: 01 September 2006
  • Primary: 65N30, 65N10; Secondary: 76S05, 76T05.

  • In this paper we systematically review the control volume finite element (CVFE) methods for numerical solutions of second-order partial differential equations. Their relationships to the finite difference and standard (Galerkin) finite element methods are considered. Through their relationship to the finite differences, upstream weighted CVFE methods and the conditions on positive transmissibilities (positive flux linkages) are studied. Through their relationship to the standard finite elements, error estimates for the CVFE are obtained. These estimates are comparable to those for the standard finite element methods using piecewise linear elements. Finally, an application to multiphase flows in porous media is presented.

    Citation: Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow[J]. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689

    Related Papers:

    [1] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [2] Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021
    [3] Jérôme Droniou . Remarks on discretizations of convection terms in Hybrid mimetic mixed methods. Networks and Heterogeneous Media, 2010, 5(3): 545-563. doi: 10.3934/nhm.2010.5.545
    [4] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie . A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1
    [5] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [6] Lifang Pei, Man Zhang, Meng Li . A novel error analysis of nonconforming finite element for the clamped Kirchhoff plate with elastic unilateral obstacle. Networks and Heterogeneous Media, 2023, 18(3): 1178-1189. doi: 10.3934/nhm.2023050
    [7] Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal . Application of a coupled FV/FE multiscale method to cement media. Networks and Heterogeneous Media, 2010, 5(3): 603-615. doi: 10.3934/nhm.2010.5.603
    [8] Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda . Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks and Heterogeneous Media, 2010, 5(4): 813-847. doi: 10.3934/nhm.2010.5.813
    [9] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [10] Daniel Peterseim . Robustness of finite element simulations in densely packed random particle composites. Networks and Heterogeneous Media, 2012, 7(1): 113-126. doi: 10.3934/nhm.2012.7.113
  • In this paper we systematically review the control volume finite element (CVFE) methods for numerical solutions of second-order partial differential equations. Their relationships to the finite difference and standard (Galerkin) finite element methods are considered. Through their relationship to the finite differences, upstream weighted CVFE methods and the conditions on positive transmissibilities (positive flux linkages) are studied. Through their relationship to the standard finite elements, error estimates for the CVFE are obtained. These estimates are comparable to those for the standard finite element methods using piecewise linear elements. Finally, an application to multiphase flows in porous media is presented.


  • This article has been cited by:

    1. Pengzhan Huang, Tong Zhang, Xiaoling Ma, Superconvergence by L2-projection for a stabilized finite volume method for the stationary Navier–Stokes equations, 2011, 62, 08981221, 4249, 10.1016/j.camwa.2011.10.012
    2. Mustaque Hussain Borbora, B. Vasu, Ali J. Chamkha, A Review Study of Numerical Simulation of Lid-Driven Cavity Flow with Nanofluids, 2023, 12, 2169-432X, 589, 10.1166/jon.2023.1930
    3. Zhangxin Chen, On the heterogeneous multiscale method with various macroscopic solvers, 2009, 71, 0362546X, 3267, 10.1016/j.na.2009.01.229
    4. Jian Li, Lihua Shen, Zhangxin Chen, Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations, 2010, 50, 0006-3835, 823, 10.1007/s10543-010-0277-1
    5. Jianhong Yang, Gang Lei, Jianwei Yang, Two-Scale Picard Stabilized Finite Volume Method for the Incompressible Flow, 2014, 6, 2070-0733, 663, 10.4208/aamm.2013.m153
    6. Артeм Вадимович Блонский, Artem Vadimovich Blonsky, Евгений Борисович Савенков, Evgenii Borisovich Savenkov, Моделирование двухфазных течений в трещиноватой среде с кавернами, 2019, 31, 0234-0879, 78, 10.1134/S0234087919020060
    7. Dawei Chen, Xijun Yu, Zhangxin Chen, The Runge-Kutta control volume discontinuous finite element method for systems of hyperbolic conservation laws, 2011, 67, 02712091, 771, 10.1002/fld.2393
    8. 晟洁 苏, A Local Discontinuous Petrov-Galerkin Method for Nonlinear Dispersive Equations, 2020, 08, 2328-0557, 53, 10.12677/IJFD.2020.84006
    9. H.. Hægland, R.. Kaufmann, I.. Aavatsmark, 2013, Comparison of Vertex- and Cell-Centered Methods for Flow and Transport Simulation in 3D, 10.2118/163593-MS
    10. Jian Li, Zhangxin Chen, A new stabilized finite volume method for the stationary Stokes equations, 2009, 30, 1019-7168, 141, 10.1007/s10444-007-9060-5
    11. Jian Li, Zhangxin Chen, On the semi-discrete stabilized finite volume method for the transient Navier–Stokes equations, 2013, 38, 1019-7168, 281, 10.1007/s10444-011-9237-9
    12. Guo-Zhong Zhao, Xi-Jun Yu, Peng-Yun Guo, The discontinuous Petrov—Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate, 2013, 22, 1674-1056, 050206, 10.1088/1674-1056/22/5/050206
    13. Zhao Zhang, Sebastian Geiger, Margaret Rood, Carl Jacquemyn, Matthew Jackson, Gary Hampson, Felipe Moura De Carvalho, Clarissa Coda Marques Machado Silva, Julio Daniel Machado Silva, Mario Costa Sousa, A Tracing Algorithm for Flow Diagnostics on Fully Unstructured Grids With Multipoint Flux Approximation, 2017, 22, 1086-055X, 1946, 10.2118/182635-PA
    14. Wei Liu, Zhijiang Kang, Hongxing Rui, Finite volume element approximation of the coupled continuum pipe-flow/Darcy model for flows in karst aquifers, 2014, 30, 0749159X, 376, 10.1002/num.21813
    15. Liehui Zhang, 2019, 66, 9780444643155, 237, 10.1016/B978-0-444-64315-5.00008-5
    16. Guoliang He, Yinnian He, Zhangxin Chen, A penalty finite volume method for the transient Navier–Stokes equations, 2008, 58, 01689274, 1583, 10.1016/j.apnum.2007.09.006
    17. Pengzhan Huang, Xinlong Feng, Error estimates for two-level penalty finite volume method for the stationary Navier-Stokes equations, 2013, 36, 01704214, 1918, 10.1002/mma.2736
    18. L. Marcinkowski, T. Rahman, A. Loneland, J. Valdman, Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems, 2016, 56, 0006-3835, 967, 10.1007/s10543-015-0581-x
    19. A. V. Blonskii, E. B. Savenkov, Two-Phase Modeling within Fractured Vuggy Reservoir, 2019, 11, 2070-0482, 778, 10.1134/S2070048219050041
    20. H. Hægland, A. Assteerawatt, H.K. Dahle, G.T. Eigestad, R. Helmig, Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture–matrix system, 2009, 32, 03091708, 1740, 10.1016/j.advwatres.2009.09.006
    21. Robert Eymard, Cindy Guichard, Raphaele Herbin, Roland Masson, Vertex-centred discretization of multiphase compositional Darcy flows on general meshes, 2012, 16, 1420-0597, 987, 10.1007/s10596-012-9299-x
    22. Xiu Ye, A posterior error estimate for finite volume methods of the second order elliptic problem, 2011, 27, 0749159X, 1165, 10.1002/num.20575
    23. Artem Vadimovich Blonsky, Evgeny Borisovich Savenkov, Mathematical model and computational algorithms for flow in discrete fracture network with vugs, 2017, 20712898, 1, 10.20948/prepr-2017-133
    24. Saurabh K Tiwary, Joel R Phillips, 2007, WAVSTAN: Waveform based Variational Static Timing Analysis, 978-3-9810801-2-4, 1, 10.1109/DATE.2007.364424
    25. Jian Li, Xiaolin Lin, Xin Zhao, Optimal estimates on stabilized finite volume methods for the incompressible Navier–Stokes model in three dimensions, 2019, 35, 0749-159X, 128, 10.1002/num.22294
    26. 2019, 66, 9780444643155, 311, 10.1016/B978-0-444-64315-5.09994-0
    27. Artem Vadimovich Blonsky, Dmitriy Aleksandrovich Mitrushkin, Evgeny Borisovich Savenkov, Discrete fracture network modelling: A computational algorithms, 2017, 20712898, 1, 10.20948/prepr-2017-66
    28. Guoliang He, Yinnian He, The finite volume method based on stabilized finite element for the stationary Navier–Stokes problem, 2007, 205, 03770427, 651, 10.1016/j.cam.2006.07.007
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4814) PDF downloads(95) Cited by(28)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog