In this paper we study a convection-reaction-diffusion equation of the form $ u_t = \varepsilon(h(u)u_x)_x-f(u)_x+f'(u), \; \; t > 0, $ with a nonlinear diffusion in a bounded interval of the real line. In particular, we first focus our attention on the existence of stationary solutions with at most one zero inside the interval, studying their behavior with respect to the viscosity coefficient $ \varepsilon > 0 $ and their stability/instability properties. Then, we investigate the large time behavior of the solutions for finite times and the asymptotic regime. We also show numerically that, for a particular class of initial data, the so-called metastable behavior occurs, meaning that the time-dependent solution persists for an exponentially long (with respect to $ \varepsilon $) time in a transition non-stable phase, before converging to a stable configuration.
Citation: Alessandro Alla, Alessandra De Luca, Raffaele Folino, Marta Strani. Stability properties of solutions to convection-reaction equations with nonlinear diffusion[J]. Mathematics in Engineering, 2025, 7(5): 553-585. doi: 10.3934/mine.2025023
In this paper we study a convection-reaction-diffusion equation of the form $ u_t = \varepsilon(h(u)u_x)_x-f(u)_x+f'(u), \; \; t > 0, $ with a nonlinear diffusion in a bounded interval of the real line. In particular, we first focus our attention on the existence of stationary solutions with at most one zero inside the interval, studying their behavior with respect to the viscosity coefficient $ \varepsilon > 0 $ and their stability/instability properties. Then, we investigate the large time behavior of the solutions for finite times and the asymptotic regime. We also show numerically that, for a particular class of initial data, the so-called metastable behavior occurs, meaning that the time-dependent solution persists for an exponentially long (with respect to $ \varepsilon $) time in a transition non-stable phase, before converging to a stable configuration.
| [1] |
H. Berestycki, S. Kamin, G. Sivashinsky, Metastability in a flame front evolution equation, Interfaces Free Bound., 33 (2001), 361–92. https://doi.org/10.4171/ifb/45 doi: 10.4171/ifb/45
|
| [2] |
L. E. Bobidus, D. O'Regan, W. D. Royalty, Steady-state reaction-diffusion-convection equations: dead cores and singular perturbations, Nonlinear Anal.: Theory Methods Appl., 11 (1987), 527–38. https://doi.org/10.1016/0362-546X(87)90069-1 doi: 10.1016/0362-546X(87)90069-1
|
| [3] |
P. Broadbridge, Exact solvability of the Mullins nonlinear diffusion model of groove development, J. Math. Phys., 30 (1989), 1648–1651. https://doi.org/10.1063/1.528300 doi: 10.1063/1.528300
|
| [4] |
T. Chen, H. A. Levine, P. E. Sacks, Analysis of a convective reaction-diffusion equation, Nonlinear Anal.: Theory Methods Appl., 12 (1988), 1349–1370. https://doi.org/10.1016/0362-546X(88)90083-1 doi: 10.1016/0362-546X(88)90083-1
|
| [5] | L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, 2010. |
| [6] |
F. A. Howes, The asymptotic stability of steady solutions of reaction-convection-diffusion equations, J. Reine Angew. Math., 388 (1988), 212–220. https://doi.org/10.1515/crll.1988.388.212 doi: 10.1515/crll.1988.388.212
|
| [7] |
A. T. Hill, E. Suli, Dynamics of a nonlinear convection-diffusion equation in multidimensional bounded domains, Proc. R. Soc. Edinburgh: Sec. A Math., 125 (1995), 439–448. https://doi.org/10.1017/S0308210500028110 doi: 10.1017/S0308210500028110
|
| [8] |
F. A. Howes, S. Whitaker, Asymptotic stability in the presence of convection, Nonlinear Anal.: Theory Methods Appl., 12 (1988), 1451–1459. https://doi.org/10.1016/0362-546X(88)90090-9 doi: 10.1016/0362-546X(88)90090-9
|
| [9] | Yu L. Klimontovich, Turbulent motion and the structure of chaos, A New Approach to the Statistical Theory of Open Systems, 1 Ed., Vol. 42, Springer Dordrecht, 1991. https://doi.org/10.1007/978-94-011-3426-2 |
| [10] | O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., 1968. |
| [11] | A. N. Lyberopoulos, Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation, Quart. Math. Appl., 48 (1990), 755–765. |
| [12] |
A. B. Mikishev, G. I. Sivashinsky, Quasi-equilibrium in upward propagating flames, Phys. Lett. A, 175 (1993), 409–414. https://doi.org/10.1016/0375-9601(93)90992-9 doi: 10.1016/0375-9601(93)90992-9
|
| [13] | W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333–339. https://doi.org/10.1063/1.1722742 |
| [14] |
H. Nessyahu, Convergence rate of approximate solutions to weakly coupled nonlinear systems, Math. Compu., 65 (1996), 575–586. https://doi.org/10.1090/S0025-5718-96-00716-8 doi: 10.1090/S0025-5718-96-00716-8
|
| [15] | O. A. Oleinik, Discontinuous solutions of non-linear differential equations, Russian Math. Surveys., 12 (1957), 3–73. |
| [16] |
Z. Rakib, G. I. Sivashinsky, Instabilities in upward propagating flames, Combust. Sci. Technol., 54 (1987), 69–84. https://doi.org/10.1080/00102208708947045 doi: 10.1080/00102208708947045
|
| [17] |
D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979–1000. https://doi.org/10.1512/iumj.1972.21.21079 doi: 10.1512/iumj.1972.21.21079
|
| [18] |
M. Strani, Metastable dynamics of internal interfaces for a convection-reaction-diffusion equation, Nonlinearity, 28 (2015), 4331. https://doi.org/10.1088/0951-7715/28/12/4331 doi: 10.1088/0951-7715/28/12/4331
|
| [19] |
X. Sun, M. J. Ward, Metastability for a generalized Burgers equation with applications to propagating flame fronts, Eur. J. Appl. Math., 10 (1999), 27–53. https://doi.org/10.1017/S0956792598003623 doi: 10.1017/S0956792598003623
|