Hysteresis in the pressure-saturation relation in unsaturated porous media, which is due to surface tension on the liquid-gas interface, exhibits strong degeneracy in the resulting mass balance equation. Solutions to such degenerate equations have been recently constructed by the method of convexification even if the permeability coefficient depends on the hysteretic saturation. The model is extended here to the case that the solid matrix material is viscoelastic and that the system is coupled with a gravity-driven moisture flux. The existence of a solution is proved by compact anisotropic embedding involving Orlicz spaces with respect to the time variable.
Citation: Chiara Gavioli, Pavel Krejčí. Deformable porous media with degenerate hysteresis in gravity field[J]. Mathematics in Engineering, 2025, 7(1): 35-60. doi: 10.3934/mine.2025003
Hysteresis in the pressure-saturation relation in unsaturated porous media, which is due to surface tension on the liquid-gas interface, exhibits strong degeneracy in the resulting mass balance equation. Solutions to such degenerate equations have been recently constructed by the method of convexification even if the permeability coefficient depends on the hysteretic saturation. The model is extended here to the case that the solid matrix material is viscoelastic and that the system is coupled with a gravity-driven moisture flux. The existence of a solution is proved by compact anisotropic embedding involving Orlicz spaces with respect to the time variable.
| [1] | R. A. Adams, Sobolev spaces, Academic Press, 1975. |
| [2] |
B. Albers, Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review, Acta Mech., 225 (2014), 2163–2189. https://doi.org/10.1007/s00707-014-1122-4 doi: 10.1007/s00707-014-1122-4
|
| [3] |
M. Al Saaideh, N. Alatawneh, M. Al Janaideh, A generalized Prandtl-Ishlinskii model for hysteresis modeling in electromagnetic devices, 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 2021, 4513–4518. https://doi.org/10.1109/ECCE47101.2021.9595830 doi: 10.1109/ECCE47101.2021.9595830
|
| [4] |
F. Bagagiolo, A. Visintin, Hysteresis in filtration through porous media, Z. Anal. Anwend., 19 (2000), 977–997. https://doi.org/10.4171/ZAA/993 doi: 10.4171/ZAA/993
|
| [5] | F. Bagagiolo, A. Visintin, Porous media filtration with hysteresis, Adv. Math. Sci. Appl., 14 (2004), 379–403. |
| [6] |
M. Balato, S. Perna, C. Petrarca, C. Visone, A simple scheme for the inversion of a Preisach like hysteresis operator in saturation conditions, AIP Adv., 12 (2022), 035047. https://doi.org/10.1063/9.0000331 doi: 10.1063/9.0000331
|
| [7] | O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, Nauka, Moscow, 1975. |
| [8] | E. El Behi-Gornostaeva, Well-posedness for flows in porous media with a hysteretic constitutive relation, Ph.D. Thesis, Technische Universität München, 2017. Available at: https://mediatum.ub.tum.de/doc/1335260/document.pdf. |
| [9] |
E. El Behi-Gornostaeva, K. Mitra, B. Schweizer, Traveling wave solutions for the Richards equation with hysteresis, IMA J. Appl. Math., 84 (2019), 797–812. https://doi.org/10.1093/imamat/hxz015 doi: 10.1093/imamat/hxz015
|
| [10] |
M. Eleuteri, P. Krejčí, Asymptotic behaviour of a Neumann parabolic problem with hysteresis, Z. Angew. Math. Mech., 87 (2007), 261–277. https://doi.org/10.1002/zamm.200610299 doi: 10.1002/zamm.200610299
|
| [11] | S. Fučík, A. Kufner, Nonlinear differential equations, Elsevier, 1980. |
| [12] |
C. Gavioli, P. Krejčí, Degenerate diffusion with Preisach hysteresis, Discrete Contin. Dyn. Syst.-S, 16 (2023), 3677–3708. https://doi.org/10.3934/dcdss.2023154 doi: 10.3934/dcdss.2023154
|
| [13] |
C. Gavioli, P. Krejčí, Degenerate diffusion in porous media with hysteresis-dependent permeability, Discrete Contin. Dyn. Syst., 45 (2025), 1523–1542. https://doi.org/10.3934/dcds.2024137 doi: 10.3934/dcds.2024137
|
| [14] |
E. Heinz, An elementary analytic theory of the degree of mapping in $n$-dimensional space, Indiana Univ. Math. J., 8 (1959), 231–247. https://doi.org/10.1512/iumj.1959.8.58017 doi: 10.1512/iumj.1959.8.58017
|
| [15] | M. Hilpert, On uniqueness for evolution problems with hysteresis, In: J. F. Rodrigues, Mathematical models for phase change problems, International Series of Numerical Mathematics, Birkhäuser, Basel, 88 (1989), 377–388. https://doi.org/10.1007/978-3-0348-9148-6_19 |
| [16] | B. Hölting, W. G. Coldewey, Hydrogeology, Springer, 2019. |
| [17] |
P. Krejčí, The Preisach hysteresis model: error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst.-S, 6 (2013), 101–119. https://doi.org/10.3934/dcdss.2013.6.101 doi: 10.3934/dcdss.2013.6.101
|
| [18] | P. Krejčí, Hysteresis, convexity and dissipation in hyperbolic equations, Vol. 8, Tokyo: Gakkotosho, 1996. |
| [19] |
K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407–418. https://doi.org/10.3166/ejc.9.407-418 doi: 10.3166/ejc.9.407-418
|
| [20] |
H. Q. Pham, D. G. Fredlund, S. L. Barbour, A study of hysteresis models for soil-water characteristic curves, Can. Geotech. J., 42 (2005), 1548–1568. https://doi.org/10.1139/t05-071 doi: 10.1139/t05-071
|
| [21] |
F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277–302. https://doi.org/10.1007/bf01349418 doi: 10.1007/bf01349418
|
| [22] | M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, 1 Ed., CRC Press, 2002. https://doi.org/10.1201/9780203910863 |
| [23] | W. Rudin, Real and complex analysis, India: McGraw-Hill, 1966. |
| [24] |
B. Schweizer, Hysteresis in porous media: modelling and analysis, Interfaces Free Bound., 19 (2017), 417–447. https://doi.org/10.4171/ifb/388 doi: 10.4171/ifb/388
|
| [25] | A. Visintin, Differential models of hysteresis, Springer, Berlin Heidelberg, 1994. https://doi.org/10.1007/978-3-662-11557-2 |
| [26] | A. Visintin, Mathematical models of hysteresis, In: G. Bertotti, I. Mayergoyz, The science of hysteresis, Ⅰ (2006), 1–123. https://doi.org/10.1016/b978-012480874-4/50004-x |