We discuss two optimization problems related to the fractional $ p $-Laplacian. First, we prove the existence of at least one minimizer for the principal eigenvalue of the fractional $ p $-Laplacian with Dirichlet conditions, with a bounded weight function varying in a rearrangement class. Then, we investigate the minimization of the energy functional for general nonlinear equations driven by the same operator, as the reaction varies in a rearrangement class. In both cases, we provide a pointwise relation between the optimizing datum and the corresponding solution.
Citation: Antonio Iannizzotto, Giovanni Porru. Optimization problems in rearrangement classes for fractional $ p $-Laplacian equations[J]. Mathematics in Engineering, 2025, 7(1): 13-34. doi: 10.3934/mine.2025002
We discuss two optimization problems related to the fractional $ p $-Laplacian. First, we prove the existence of at least one minimizer for the principal eigenvalue of the fractional $ p $-Laplacian with Dirichlet conditions, with a bounded weight function varying in a rearrangement class. Then, we investigate the minimization of the energy functional for general nonlinear equations driven by the same operator, as the reaction varies in a rearrangement class. In both cases, we provide a pointwise relation between the optimizing datum and the corresponding solution.
| [1] |
C. Anedda, F. Cuccu, S. Frassu, Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weight, Can. J. Math., 73 (2021), 970–992. https://doi.org/10.4153/S0008414X20000267 doi: 10.4153/S0008414X20000267
|
| [2] |
C. Bjorland, L. Caffarelli, A. Figalli, Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65 (2012), 337–380. https://doi.org/10.1002/cpa.21379 doi: 10.1002/cpa.21379
|
| [3] |
G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann., 276 (1987), 225–253. https://doi.org/10.1007/BF01450739 doi: 10.1007/BF01450739
|
| [4] |
G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. Henri Poincaré, 6 (1989), 295–319. https://doi.org/10.1016/S0294-1449(16)30320-1 doi: 10.1016/S0294-1449(16)30320-1
|
| [5] |
G. R. Burton, J. B. McLeod, Maximisation and minimisation on classes of rearrangements, Proc. R. Soc. Edinburgh: Sec. A Math., 119 (1991), 287–300. https://doi.org/10.1017/S0308210500014840 doi: 10.1017/S0308210500014840
|
| [6] | L. Caffarelli, Non-local diffusions, drifts and games, In: H. Holden, K. Karlsen, Nonlinear partial differential equations, Abel Symposia, Springer, Berlin, 7 (2012), 37–52. https://doi.org/10.1007/978-3-642-25361-4_3 |
| [7] | F. Cuccu, B. Emamizadeh, G. Porru, Optimization of the first eigenvalue in problems involving the $p$-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 1677–1687. |
| [8] |
F. Cuccu, G. Porru, S. Sakaguchi, Optimization problems on general classes of rearrangements, Nonlinear Anal., 74 (2011), 5554–5565. https://doi.org/10.1016/j.na.2011.05.039 doi: 10.1016/j.na.2011.05.039
|
| [9] |
L. M. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional $p$-Laplacian, J. Differ. Equ., 263 (2017), 765–778. https://doi.org/10.1016/j.jde.2017.02.051 doi: 10.1016/j.jde.2017.02.051
|
| [10] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
|
| [11] | G. Franzina, G. Palatucci, Fractional $p$-eigenvalues, Riv. Mat. Univ. Parma, 5 (2014), 373–386. |
| [12] |
A. Iannizzotto, Monotonicity of eigenvalues of the fractional $p$-Laplacian with singular weights, Topol. Methods Nonlinear Anal., 61 (2023), 423–443. https://doi.org/10.12775/TMNA.2022.024 doi: 10.12775/TMNA.2022.024
|
| [13] | A. Iannizzotto, A survey on boundary regularity for the fractional $p$-Laplacian and its applications, Bruno Pini Math. Anal. Seminar, 15 (2024), 164–186. |
| [14] |
A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional $p$-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125. https://doi.org/10.1515/acv-2014-0024 doi: 10.1515/acv-2014-0024
|
| [15] |
A. Iannizzotto, S. Mosconi, Fine boundary regularity for the singular fractional $p$-Laplacian, J. Differ. Equations, 412 (2024), 322–379. https://doi.org/10.1016/j.jde.2024.08.026 doi: 10.1016/j.jde.2024.08.026
|
| [16] | A. Iannizzotto, S. Mosconi, On a doubly sublinear fractional $p$-Laplacian equation, arXiv, 2024. https://doi.org/10.48550/arXiv.2409.03616 |
| [17] |
A. Iannizzotto, S. Mosconi, N. S. Papageorgiou, On the logistic equation for the fractional $p$-Laplacian, Math. Nachr., 296 (2023), 1451–1468. https://doi.org/10.1002/mana.202100025 doi: 10.1002/mana.202100025
|
| [18] |
A. Iannizzotto, D. Mugnai, Optimal solvability for the fractional $p$-Laplacian with Dirichlet conditions, Fract. Calc. Appl. Anal., 27 (2024), 3291–3317. https://doi.org/10.1007/s13540-024-00341-w doi: 10.1007/s13540-024-00341-w
|
| [19] |
H. Ishii, G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var. Partial Differential Equations, 37 (2010), 485–522. https://doi.org/10.1007/s00526-009-0274-x doi: 10.1007/s00526-009-0274-x
|
| [20] |
B. Kawohl, M. Lucia, S. Prashanth, Simplicity of the first eigenvalue for indefinite quasilinear problems, Adv. Differ. Equations, 12 (2007), 407–434. https://doi.org/10.57262/ade/1355867457 doi: 10.57262/ade/1355867457
|
| [21] | G. Leoni, A first course in fractional Sobolev spaces, Vol. 229, American Mathematical Society, 2023. |
| [22] |
E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1
|
| [23] | G. Molica Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge: Cambridge University Press, 2016. https://doi.org/10.1017/CBO9781316282397 |
| [24] |
G. Palatucci, The Dirichlet problem for the $p$-fractional Laplace equation, Nonlinear Anal., 177 (2018), 699–732. https://doi.org/10.1016/j.na.2018.05.004 doi: 10.1016/j.na.2018.05.004
|
| [25] |
B. Pellacci, G. Verzini, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76 (2018), 1357–1386. https://doi.org/10.1007/s00285-017-1180-z doi: 10.1007/s00285-017-1180-z
|
| [26] | C. Qiu, Y. Huang, Y. Zhou, Optimization problems involving the fractional Laplacian, Electron. J. Differ. Eq., 2016 (2016), 1–15. |
| [27] | T. R. Rockafellar, Convex analysis, Princeton University Press, 1970. |
| [28] | X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2016), 3–26. |