The study aimed to evaluate the impact of the early addition of a Saccharomyces cerevisiae HD A54 strain before pressing during winemaking. This approach aimed to reduce the dissolved oxygen in the grape must, thus preserving the wine characteristics. Two different treatments were settled: Trial A, where sulphite or other substances were not added during pressing; and Trial B, where a S. cerevisiae strain was added at the pressing stage. The chemical parameters were determined through an enzymatic analyzer, which indicated a faster fructose consumption compared to the glucose in Trial A. The plate counts were measured to monitor the microbial groups during vinification. Both treatments showed regular trends with respect to the Saccharomyces population. Trial B exhibited a higher oxygen consumption compared to the control trial, especially in the early stages of winemaking. This was determined through a dissolved O2 analysis. Furthermore, Trial B had lower absorbance values at the post-pressing and pre-clarification stages. Both the dissolved oxygen and the absorbance analyses underscored the positive impact of the S. cerevisiae HD A54 strain in protecting against oxidative processes in the grape musts at the pre-fermentative stage. The analysis of volatile organic compounds detected 30 different compounds, including alcohols and esters. Trial B had higher alcohol levels, particularly hydroxyethylbenzene (135.31 mg/L vs. 44.23 mg/L in Trial A). Trial A had almost a four times higher ethyl acetate concentration than Trial B, which is an indicator of oxidation. Interestingly, Trial B showed higher concentrations of 3-methyl-butyl acetate and 2-phenylethyl acetate, which are molecules that correspond to fruity (banana) and floreal (rose) aromas, respectively. Regarding the sensory analysis, Trial B received better scores for the fruity and floral attributes, as well as the overall wine quality.
Citation: Enrico Viola, Vincenzo Naselli, Rosario Prestianni, Antonino Pirrone, Antonella Porrello, Filippo Amato, Riccardo Savastano, Antonella Maggio, Micaela Carusi, Venera Seminerio, Valentina Craparo, Azzurra Vella, Davide Alongi, Luca Settanni, Giuseppe Notarbartolo, Nicola Francesca, Antonio Alfonzo. The impact of a Saccharomyces cerevisiae bio-protective strain during cold static clarification on Catarratto wine[J]. AIMS Microbiology, 2025, 11(1): 40-58. doi: 10.3934/microbiol.2025003
[1] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[2] | Qiang Li, Lili Ma . 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058 |
[5] | Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237 |
[6] |
Bing Sun, Liangyun Chen, Yan Cao .
On the universal |
[7] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[8] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[9] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
The study aimed to evaluate the impact of the early addition of a Saccharomyces cerevisiae HD A54 strain before pressing during winemaking. This approach aimed to reduce the dissolved oxygen in the grape must, thus preserving the wine characteristics. Two different treatments were settled: Trial A, where sulphite or other substances were not added during pressing; and Trial B, where a S. cerevisiae strain was added at the pressing stage. The chemical parameters were determined through an enzymatic analyzer, which indicated a faster fructose consumption compared to the glucose in Trial A. The plate counts were measured to monitor the microbial groups during vinification. Both treatments showed regular trends with respect to the Saccharomyces population. Trial B exhibited a higher oxygen consumption compared to the control trial, especially in the early stages of winemaking. This was determined through a dissolved O2 analysis. Furthermore, Trial B had lower absorbance values at the post-pressing and pre-clarification stages. Both the dissolved oxygen and the absorbance analyses underscored the positive impact of the S. cerevisiae HD A54 strain in protecting against oxidative processes in the grape musts at the pre-fermentative stage. The analysis of volatile organic compounds detected 30 different compounds, including alcohols and esters. Trial B had higher alcohol levels, particularly hydroxyethylbenzene (135.31 mg/L vs. 44.23 mg/L in Trial A). Trial A had almost a four times higher ethyl acetate concentration than Trial B, which is an indicator of oxidation. Interestingly, Trial B showed higher concentrations of 3-methyl-butyl acetate and 2-phenylethyl acetate, which are molecules that correspond to fruity (banana) and floreal (rose) aromas, respectively. Regarding the sensory analysis, Trial B received better scores for the fruity and floral attributes, as well as the overall wine quality.
The notion of a pre-Lie algebra has been introduced independently by M. Gerstenhaber in deformation theory of rings and algebras [1] and by Vinberg, under the name of left-symmetric algebra, in his theory of homogeneous convex cones [2]. Its defining identity is weaker than associativity and lead also to a Lie algebra using commutators. This algebraic structure describes some properties of cochain spaces in Hochschild cohomology of an associative algebra, rooted trees and vector fields on affine spaces. Moreover, it is playing an increasing role in algebra, geometry and physics due to their applications in nonassociative algebras, combinatorics, numerical analysis and quantum field theory, see [3,4,5,6].
Hom-type algebras appeared naturally when studying q-deformations of some algebras of vector fields, like Witt and Virasoro algebras. It turns out that the Jacobi identity is no longer satisfied, these new structures involving a bracket and a linear map satisfy a twisted version of the Jacobi identity and define a so called Hom-Lie algebras which form a wider class, see [7,8]. Hom-pre-Lie algebras were introduced in [9] as a class of Hom-Lie admissible algebras, and play important roles in the study of Hom-Lie bialgebras and Hom-Lie 2-algebras [10,11,12]. Recently Hom-pre-Lie algebras were studied from several aspects. Cohomologies of Hom-pre-Lie algebras were studied in [13]; The geometrization of Hom-pre-Lie algebras was studied in [14]; Universal α-central extensions of Hom-pre-Lie algebras were studied in [15]; Hom-pre-Lie bialgebras were studied in [16,17]. Furthermore, connections between (Hom-)pre-Lie algebras and various algebraic structures have been established and discussed; like with Rota-Baxter operators, O-operators, (Hom-)dendriform algebras, (Hom-)associative algebras and Yang-Baxter equation, see [5,18,19,20,21,22].
The cohomology of pre-Lie algebras was defined in [23] and generalized in a straightforward way to Hom-pre-Lie algebras in [13]. Note that the cohomology given there has some restrictions: the second cohomology group can only control deformations of the multiplication, and it can not be applied to study simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. The main purpose of this paper is to define a new type of cohomology of Hom-pre-Lie algebras which is richer than the previous one. The obtained cohomology is called the full cohomology and allows to control simultaneous deformations of both the multiplication and the homomorphism in a Hom-pre-Lie algebra. This type of cohomology was established for Hom-associative algebras and Hom-Lie algebras in [24,25], and called respectively α-type Hochschild cohomology and α-type Chevalley-Eilenberg cohomology. See [26,27,28] for more studies on deformations and extensions of Hom-Lie algebras.
The paper is organized as follows. In Section 2, first we recall some basics of Hom-Lie algebras, Hom-pre-Lie algebras and representations, and then provide our main result defining the full cohomology of a Hom-pre-Lie algebra with coefficients in a given representation. In Section 3, we study one parameter formal deformations of a Hom-pre-Lie algebra, where both the defining multiplication and homomorphism are deformed, using formal power series. We show that the full cohomology of Hom-pre-Lie algebras controls these simultaneous deformations. Moreover, a relationship between deformations of a Hom-pre-Lie algebra and deformations of its sub-adjacent Lie algebra is established. Section 4 deals with abelian extensions of Hom-pre-Lie algebras. We show that the full cohomology fits perfectly and its second cohomology group classifies abelian extensions of a Hom-pre-Lie algebra by a given representation. The proof of the key Lemma to show that the four operators define a cochain complex is lengthy and it is given in the Appendix.
In this section, first we recall some basic facts about Hom-Lie algebras and Hom-pre-Lie algebras. Then we introduce the full cohomology of Hom-pre-Lie algebras, which will be used to classify infinitesimal deformations and abelian extensions of Hom-pre-Lie algebras.
Definition 2.1. (see [7]) A Hom-Lie algebra is a triple (g,[⋅,⋅]g,ϕg) consisting of a vector space g, a skew-symmetric bilinear map [⋅,⋅]g:∧2g⟶g and a homomorphism ϕg:g⟶g, satisfying ϕg[x,y]=[ϕg(x),ϕg(y)] and
[ϕg(x),[y,z]g]g+[ϕg(y),[z,x]g]g+[ϕg(z),[x,y]g]g=0,∀x,y,z∈g. | (2.1) |
A Hom-Lie algebra (g,[⋅,⋅]g,ϕg) is said to be regular if ϕg is invertible.
Definition 2.2. (see [29]) A representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) on a vector space V with respect to β∈gl(V) is a linear map ρ:g⟶gl(V), such that for all x,y∈g, the following equalities are satisfied:
ρ(ϕg(x))∘β=β∘ρ(x), | (2.2) |
ρ([x,y]g)∘β=ρ(ϕg(x))∘ρ(y)−ρ(ϕg(y))∘ρ(x). | (2.3) |
We denote a representation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg) by a triple (V,β,ρ).
Definition 2.3. (see [9]) A Hom-pre-Lie algebra (A,⋅,α) is a vector space A equipped with a bilinear product ⋅:A⊗A⟶A, and α∈gl(A), such that for all x,y,z∈A, α(x⋅y)=α(x)⋅α(y) and the following equality is satisfied:
(x⋅y)⋅α(z)−α(x)⋅(y⋅z)=(y⋅x)⋅α(z)−α(y)⋅(x⋅z). | (2.4) |
A Hom-pre-Lie algebra (A,⋅,α) is said to be regular if α is invertible.
Let (A,⋅,α) be a Hom-pre-Lie algebra. The commutator [x,y]C=x⋅y−y⋅x defines a Hom-Lie algebra (A,[⋅,⋅]C,α), which is denoted by AC and called the sub-adjacent Hom-Lie algebra of (A,⋅,α).
Definition 2.4. (see [13]) A morphism from a Hom-pre-Lie algebra (A,⋅,α) to a Hom-pre-Lie algebra (A′,⋅′,α′) is a linear map f:A⟶A′ such that for all x,y∈A, the following equalities are satisfied:
f(x⋅y)=f(x)⋅′f(y),∀x,y∈A, | (2.5) |
f∘α=α′∘f. | (2.6) |
Definition 2.5. (see [17]) A representation of a Hom-pre-Lie algebra (A,⋅,α) on a vector space V with respect to β∈gl(V) consists of a pair (ρ,μ), where ρ:A⟶gl(V) is a representation of the sub-adjacent Hom-Lie algebra AC on V with respect to β∈gl(V), and μ:A⟶gl(V) is a linear map, satisfying, for all x,y∈A:
β∘μ(x)=μ(α(x))∘β, | (2.7) |
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (2.8) |
We denote a representation of a Hom-pre-Lie algebra (A,⋅,α) by a quadruple (V,β,ρ,μ). Furthermore, Let L,R:A⟶gl(A) be linear maps, where Lxy=x⋅y,Rxy=y⋅x. Then (A,α,L,R) is also a representation, which we call the regular representation.
Let (A,⋅,α) be a Hom-pre-Lie algebra. In the sequel, we will also denote the Hom-pre-Lie algebra multiplication ⋅ by ω.
Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,ω,α). We define Cnω(A;V) and Cnα(A;V) respectively by
Cnω(A;V)=Hom(∧n−1A⊗A,V),Cnα(A;V)=Hom(∧n−2A⊗A,V),∀n≥2. |
Define the set of cochains ˜Cn(A;V) by
{˜Cn(A;V)=Cnω(A;V)⊕Cnα(A;V),∀n≥2,˜C1(A;V)=Hom(A,V). | (2.9) |
For all (φ,ψ)∈˜Cn(A;V),x1,…,xn+1∈A, we define ∂ωω:Cnω(A;V)⟶Cn+1ω(A;V) by
(∂ωωφ)(x1,…,xn+1)=n∑i=1(−1)i+1ρ(αn−1(xi))φ(x1,…,^xi,…,xn+1)+n∑i=1(−1)i+1μ(αn−1(xn+1))φ(x1,…,^xi,…,xn,xi)−n∑i=1(−1)i+1φ(α(x1),…,^α(xi)…,α(xn),xi⋅xn+1)+∑1≤i<j≤n(−1)i+jφ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+1)), |
where the hat corresponds to deleting the element, define ∂αα:Cnα(A;V)⟶Cn+1α(A;V) by
(∂ααψ)(x1,…,xn)=n−1∑i=1(−1)iρ(αn−1(xi))ψ(x1,…,^xi,…,xn)+n−1∑i=1(−1)iμ(αn−1(xn))ψ(x1,…,^xi,…,xn−1,xi)−n−1∑i=1(−1)iψ(α(x1),…,^α(xi),…,α(xn−1),xi⋅xn)+∑1≤i<j≤n−1(−1)i+j−1ψ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn)), |
define ∂ωα:Cnω(A;V)⟶Cn+1α(A;V) by
(∂ωαφ)(x1,…,xn)=βφ(x1,…,xn)−φ(α(x1),…,α(xn)), |
and define ∂αω:Cnα(A;V)⟶Cn+1ω(A;V) by
(∂αωψ)(x1,…,xn+1)=∑1≤i<j≤n(−1)i+jρ([αn−2(xi),αn−2(xj)]C)ψ(x1,…,^xi,…,^xj,…,xn+1)+∑1≤i<j≤n(−1)i+jμ(αn−2(xi)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xj)−∑1≤i<j≤n(−1)i+jμ(αn−2(xj)⋅αn−2(xn+1))ψ(x1,…,^xi,…,^xj,…,xn,xi). |
Define the operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) by
˜∂(φ,ψ)=(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ),∀φ∈Cnω(A;V),ψ∈Cnα(A;V),n≥2, | (2.10) |
˜∂(φ)=(∂ωωφ,∂ωαφ),∀φ∈Hom(A,V). | (2.11) |
The following diagram will explain the above operators:
![]() |
Lemma 2.6. With the above notations, we have
∂ωω∘∂ωω+∂αω∘∂ωα=0, | (2.12) |
∂ωω∘∂αω+∂αω∘∂αα=0, | (2.13) |
∂ωα∘∂ωω+∂αα∘∂ωα=0, | (2.14) |
∂ωα∘∂αω+∂αα∘∂αα=0. | (2.15) |
Proof. The proof is given in the Appendix.
Theorem 2.7. The operator ˜∂:˜Cn(A;V)⟶˜Cn+1(A;V) defined as above satisfies ˜∂∘˜∂=0.
Proof. When n≥2, for all (φ,ψ)∈˜Cn(A;V), by (2.10) and Lemma 2.6, we have
˜∂∘˜∂(φ,ψ)=˜∂(∂ωωφ+∂αωψ,∂ωαφ+∂ααψ)=(∂ωω∂ωωφ+∂ωω∂αωψ+∂αω∂ωαφ+∂αω∂ααψ,∂ωα∂ωωφ+∂ωα∂αωψ+∂αα∂ωαφ+∂αα∂ααψ)=0. |
When n=1, for all φ∈Hom(A,V), by (2.11) and Lemma 2.6, we have
˜∂∘˜∂(φ)=˜∂(∂ωωφ,∂ωαφ)=(∂ωω∂ωωφ+∂αω∂ωαφ,∂ωα∂ωωφ+∂αα∂ωαφ)=0. |
This finishes the proof.
We denote the set of closed n-cochains by ˜Zn(A;V) and the set of exact n-cochains by ˜Bn(A;V). We denote by ˜Hn(A;V)=˜Zn(A;V)/˜Bn(A;V) the corresponding cohomology groups.
Definition 2.8. Let (V,β,ρ,μ) be a representation of a Hom-pre-Lie algebra (A,⋅,α). The cohomology of the cochain complex (⊕∞n=1˜Cn(A;V),∂) is called the full cohomology of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
We use ˜∂reg to denote the coboundary operator of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the regular representation. The corresponding cohomology group will be denoted by ˜Hn(A;A).
Remark 2.9. Compared with the cohomology theory of Hom-pre-Lie algebras studied in [13], the above full cohomology contains more informations. In the next section, we will see that the second cohomology group can control simultaneous deformations of the multiplication and the homomorphism in a Hom-pre-Lie algebra.
In this section, we study formal deformations of Hom-pre-Lie algebras using the cohomology theory established in the last section. We show that the infinitesimal of a formal deformation is a 2-cocycle and depends only on its cohomology class. Moreover, if the cohomology group ˜H2(A;A) is trivial, then the Hom-pre-Lie algebra is rigid.
Definition 3.1. Let (A,ω,α) be a Hom-pre-Lie algebra, ωt=ω+∑+∞i=1ωiti:A[[t]]⊗A[[t]]⟶A[[t]] be a K[[t]]-bilinear map and αt=α+∑+∞i=1αiti:A[[t]]⟶A[[t]] be a K[[t]]-linear map, where ωi:A⊗A⟶A and αi:A⟶A are linear maps. If (A[[t]],ωt,αt) is still a Hom-pre-Lie algebra, we say that {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α).
If {ωi,αi}i≥1 generates a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), for all x,y,z∈A and n=1,2,…, we then have
∑i+j+k=ni,j,k≥0ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=0. | (3.1) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(ωj(x,y),αk(z))−ωi(αj(x),ωk(y,z))−ωi(ωj(y,x),αk(z))+ωi(αj(y),ωk(x,z))=(∂ωωωn+∂αωαn)(x,y,z). | (3.2) |
For all x,y∈A and n=1,2,…, we have
∑i+j+k=ni,j,k≥0ωi(αj(x),αk(y))−∑i+j=ni,j≥0αi(ωj(x,y))=0. | (3.3) |
Moreover, we have
∑i+j+k=n0<i,j,k≤n−1ωi(αj(x),αk(y))−∑i+j=ni,j>0αi(ωj(x,y))=(∂ωαωn+∂αααn)(x,y). | (3.4) |
Proposition 3.2. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). Then (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α) with coefficients in the regular representation.
Proof. When n=1, by (3.1), we have
0=(x⋅y)⋅α1(z)+ω1(x,y)⋅α(z)+ω1(x⋅y,α(z))−α(x)⋅ω1(y,z)−α1(x)⋅(y⋅z)−ω1(α(x),y⋅z)−(y⋅x)⋅α1(z)−ω1(y,x)⋅α(z)−ω1(y⋅x,α(z))+α(y)⋅ω1(x,z)+α1(y)⋅(x⋅z)+ω1(α(y),x⋅z)=−(∂ωωω1+∂αωα1)(x,y,z), |
and by (3.3), we have
0=ω1(α(x),α(y))+α1(x)⋅α(y)+α(x)⋅α1(y)−α(ω1(x,y))−α1(x⋅y)=−(∂ωαω1+∂ααα1)(x,y), |
which implies that ˜∂reg(ω1,α1)=0. Thus, (ω1,α1) is a 2-cocycle of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.3. The 2-cocycle (ω1,α1) is called the infinitesimal of the 1-parameter formal deformation (A[[t]],ωt,αt) of the Hom-pre-Lie algebra (A,ω,α).
Definition 3.4. Let (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be two 1-parameter formal deformations of a Hom-pre-Lie algebra (A,ω,α). A formal isomorphism from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt) is a power series Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ω′t=ωt∘(Φt×Φt), | (3.5) |
αt∘Φt=Φt∘α′t. | (3.6) |
Two 1-parameter formal deformations (A[[t]],ω′t,α′t) and (A[[t]],ωt,αt) are said to be equivalent if there exists a formal isomorphism Φt=∑+∞i=0φiti from (A[[t]],ω′t,α′t) to (A[[t]],ωt,αt).
Theorem 3.5. Let (A,ω,α) be a Hom-pre-Lie algebra.If two 1-parameter formal deformations (ω′t=ω+∑+∞i=1ω′iti,α′t=α+∑+∞i=1α′iti) and (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) are equivalent, then there infinitesimals (ω′1,α′1) and (ω1,α1) are in the same cohomology class of ˜H2(A;A).
Proof. Let (ω′t,α′t) and (ωt,αt) be two 1-parameter formal deformations. By Proposition 3.2, we have (ω′1,α′1) and (ω1,α1)∈˜Z2(A;A). Let Φt=∑+∞i=0φiti be the formal isomorphism. Then for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φ1t+…)ωt(x+φ1(x)t+…,y+φ1(y)t+…)=(Id−φ1t+…)(x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y))t+…)=x⋅y+(x⋅φ1(y)+φ1(x)⋅y+ω1(x,y)−φ1(x⋅y))t+…. |
Thus, we have
ω′1(x,y)−ω1(x,y)=x⋅φ1(y)+φ1(x)⋅y−φ1(x⋅y)=∂ωωφ1(x,y), |
which implies that ω′1−ω1=∂ωωφ1.
For all x∈A, we have
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φ1t+…)αt(x+φ1(x)t+…)=(Id−φ1t+…)(α(x)+(α(φ1(x))+α1(x))t+…)=α(x)+(α(φ1(x))+α1(x)−φ1(α(x)))t+…. |
Thus, we have
α′1(x)−α1(x)=α(φ1(x))−φ1(α(x))=∂ωαφ1(x), |
which implies that α′1−α1=∂ωαφ1.
Thus, we have (ω′1−ω1,α′1−α1)∈˜B2(A;A). This finishes the proof.
Definition 3.6. A 1-parameter formal deformation (A[[t]],ωt,αt) of a Hom-pre-Lie algebra (A,ω,α) is said to be trivial if it is equivalent to (A,ω,α), i.e. there exists Φt=∑+∞i=0φiti, where φi:A⟶A are linear maps with φ0=Id, such that
Φt∘ωt=ω∘(Φt×Φt), | (3.7) |
α∘Φt=Φt∘αt. | (3.8) |
Definition 3.7. Let (A,ω,α) be a Hom-pre-Lie algebra. If all 1-parameter formal deformations are trivial, we say that (A,ω,α) is rigid.
Theorem 3.8. Let (A,ω,α) be a Hom-pre-Lie algebra. If ˜H2(A;A)=0, then (A,ω,α) is rigid.
Proof. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation and assume that n≥1 is the minimal number such that at least one of ωn and αn is not zero. By (3.2), (3.4) and ˜H2(A;A)=0, we have (ωn,αn)∈˜B2(A;A). Thus, there exists φn∈˜C1(A;A) such that ωn=∂ωω(−φn) and αn=∂ωα(−φn). Let Φt=Id+φntn and define a new formal deformation (ω′t,α′t) by ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y)) and α′t(x)=Φ−1t∘αt(Φt(x)). Then (ω′t,α′t) and (ωt,αt) are equivalent. By a straightforward computation, for all x,y∈A, we have
ω′t(x,y)=Φ−1t∘ωt(Φt(x),Φt(y))=(Id−φntn+…)ωt(x+φn(x)tn,y+φn(y)tn)=(Id−φntn+…)(x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y))tn+…)=x⋅y+(x⋅φn(y)+φn(x)⋅y+ωn(x,y)−φn(x⋅y))tn+…. |
Thus, we have ω′1=ω′2=⋯=ω′n−1=0. Moreover, we obtain
ω′n(x,y)=φn(x)⋅y+x⋅φn(y)+ωn(x,y)−φn(x⋅y)=∂ωωφn(x,y)+ωn(x,y)=0. |
For all x∈A, we get
α′t(x)=Φ−1t∘αt(Φt(x))=(Id−φntn+…)αt(x+φn(x)tn)=(Id−φ1tn+…)(α(x)+(α(φn(x))+αn(x))tn+…)=α(x)+(α(φn(x))+αn(x)−φn(α(x)))tn+…. |
Thus, α′1=α′2=⋯=α′n−1=0, and
α′n(x,y)=α(φn(x))+αn(x)−φn(α(x))=∂ωαφn(x)+αn(x)=0. |
By repeating this process, we obtain that (A[[t]],ωt,αt) is equivalent to (A,ω,α). The proof is finished.
At the end of this section, we recall 1-parameter formal deformations of Hom-Lie algebras, and establish the relation between 1-parameter formal deformations of Hom-pre-Lie algebras and 1-parameter formal deformations of Hom-Lie algebras.
Definition 3.9. (see [25]) Let (g,[⋅,⋅]g,ϕg) be a Hom-Lie algebra, [⋅,⋅]t=[⋅,⋅]g+∑+∞i=1ˉωiti:g[[t]]∧g[[t]]⟶g[[t]] be a K[[t]]-bilinear map and ϕt=ϕg+∑+∞i=1ϕiti:g[[t]]⟶g[[t]] be a K[[t]]-linear map, where ˉωi:g⊗g⟶g and ϕi:g⟶g are linear maps. If (g[[t]],[⋅,⋅]t,ϕt) is still a Hom-Lie algebra, we say that {ˉωi,ϕi}i≥1 generates a 1-parameter formal deformation of a Hom-Lie algebra (g,[⋅,⋅]g,ϕg).
Proposition 3.10. Let (ωt=ω+∑+∞i=1ωiti,αt=α+∑+∞i=1αiti) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α), then
{ωi−ωi∘σ,αi}i≥1 |
generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC, where σ:A⊗A⟶A⊗A is the flip operator defined by σ(x⊗y)=y⊗x for all x,y∈A.
Proof. Let (A[[t]],ωt,αt) be a 1-parameter formal deformation of a Hom-pre-Lie algebra (A,ω,α). For all x,y∈A, we have
ωt(x,y)−ωt(y,x)=ω(x,y)−ω(y,x)++∞∑i=1ωi(x,y)ti−+∞∑i=1ωi(y,x)ti=[x,y]C++∞∑i=1(ωi−ωi∘σ)(x,y)ti, |
and
αt∘(ωt(x,y)−ωt(y,x))=ωt(αt(x),αt(y))−ωt(αt(y),αt(x)). |
Therefore, {ωi−ωi∘σ,αi}i≥1 generates a 1-parameter formal deformation of the sub-adjacent Hom-Lie algebra AC.
In this section, we study abelian extensions of Hom-pre-Lie algebras using the cohomological approach. We show that abelian extensions are classified by the cohomology group ˜H2(A;V).
Definition 4.1. Let (A,⋅,α) and (V,⋅V,β) be two Hom-pre-Lie algebras. An extension of (A,⋅,α) by (V,⋅V,β) is a short exact sequence of Hom-pre-Lie algebra morphisms:
![]() |
where (ˆA,⋅ˆA,αˆA) is a Hom-pre-Lie algebra.
It is called an abelian extension if (V,⋅V,β) is an abelian Hom-pre-Lie algebra, i.e. for all u,v∈V,u⋅Vv=0.
Definition 4.2. A section of an extension (ˆA,⋅ˆA,αˆA) of a Hom-pre-Lie algebra (A,⋅,α) by (V,⋅V,β) is a linear map s:A⟶ˆA such that p∘s=IdA.
Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) and s:A⟶ˆA a section. For all x,y∈A, define linear maps θ:A⊗A⟶V and ξ:A⟶V respectively by
θ(x,y)=s(x)⋅ˆAs(y)−s(x⋅y), | (4.1) |
ξ(x)=αˆA(s(x))−s(α(x)). | (4.2) |
And for all x,y∈A,u∈V, define ρ,μ:A⟶gl(V) respectively by
ρ(x)(u)=s(x)⋅ˆAu, | (4.3) |
μ(x)(u)=u⋅ˆAs(x). | (4.4) |
Obviously, ˆA is isomorphic to A⊕V as vector spaces. Transfer the Hom-pre-Lie algebra structure on ˆA to that on A⊕V, we obtain a Hom-pre-Lie algebra (A⊕V,⋄,ϕ), where ⋄ and ϕ are given by
(x+u)⋄(y+v)=x⋅y+θ(x,y)+ρ(x)(v)+μ(y)(u),∀x,y∈A,u,v∈V, | (4.5) |
ϕ(x+u)=α(x)+ξ(x)+β(u),∀x∈A,u∈V. | (4.6) |
Theorem 4.3. With the above notations, we have
(i) (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α),
(ii) (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α) with coefficients in the representation (V,β,ρ,μ).
Proof. For all x∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄v)−ϕ(x)⋄ϕ(v)=β(ρ(x)(v))−ρ(α(x))β(v)=0, |
which implies that
β∘ρ(x)=ρ(α(x))∘β. | (4.7) |
Similarly, we have
β∘μ(x)=μ(α(x))∘β. | (4.8) |
For all x,y∈A, v∈V, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(v)−ϕ(x)⋄(y⋄v)−(y⋄x)⋄ϕ(v)+ϕ(y)⋄(x⋄v)=(x⋅y+θ(x,y))⋄β(v)−(α(x)+ξ(x))⋄ρ(y)(v)−(y⋅x+θ(y,x))⋄β(v)+(α(y)+ξ(y))⋄ρ(x)(v)=ρ(x⋅y)β(v)−ρ(α(x))ρ(y)(v)−ρ(y⋅x)β(v)+ρ(α(y))ρ(x)(v)=ρ([x,y]C)β(v)−ρ(α(x))ρ(y)(v)+ρ(α(y))ρ(x)(v)=0, |
which implies that
ρ([x,y]C)∘β=ρ(α(x))∘ρ(y)−ρ(α(y))∘ρ(x). | (4.9) |
Similarly, we have
μ(α(y))∘μ(x)−μ(x⋅y)∘β=μ(α(y))∘ρ(x)−ρ(α(x))∘μ(y). | (4.10) |
By (4.7), (4.8), (4.9), (4.10), we obtain that (V,β,ρ,μ) is a representation.
For all x,y∈A, by the definition of a Hom-pre-Lie algebra, we have
ϕ(x⋄y)−ϕ(x)⋄ϕ(y)=ϕ(x⋅y+θ(x,y))−α(x)⋅α(y)−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=ξ(x⋅y)+β(θ(x,y))−θ(α(x),α(y))−ρ(α(x))ξ(y)−μ(α(y))ξ(x)=∂ωαθ(x,y)+∂ααξ(x,y)=0, |
which implies that
∂ωαθ+∂ααξ=0. | (4.11) |
For all x,y,z∈A, by the definition of a Hom-pre-Lie algebra, we have
(x⋄y)⋄ϕ(z)−ϕ(x)⋄(y⋄z)−(y⋄x)⋄ϕ(z)+ϕ(y)⋄(x⋄z)=(x⋅y+θ(x,y))⋄(α(z)+ξ(z))−(α(x)+ξ(x))⋄(y⋅z+θ(y,z))−(y⋅x+θ(y,x))⋄(α(z)+ξ(z))+(α(y)+ξ(y))⋄(x⋅z+θ(x,z))=θ(x⋅y,α(z))+μ(α(z))θ(x,y)−θ(α(x),y⋅z)−ρ(α(x))θ(y,z)−θ(y⋅x,α(z))−μ(α(z))θ(y,x)+θ(α(y),x⋅z)+ρ(α(y))θ(x,z)+ρ(x⋅y)ξ(z)−μ(y⋅z)ξ(x)−ρ(y⋅x)ξ(z)+μ(x⋅z)ξ(y)=−∂ωωθ(x,y,z)−∂αωξ(x,y,z)=0, |
which implies that
∂ωωθ+∂αωξ=0. | (4.12) |
By Eqs (4.11) and (4.12), we obtain that ˜∂(θ,ξ)=0, which implies that (θ,ξ) is a 2-cocycle of the Hom-pre-Lie algebra (A,⋅,α). The proof is finished.
Definition 4.4. Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) be two abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). They are said to be isomorphic if there exists a Hom-pre-Lie algebra isomorphism ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) such that the following diagram is commutative:
![]() |
Proposition 4.5. With the above notations, we have
(i) Two different sections of an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) give rise to the same representation of (A,⋅,α),
(ii) Isomorphic abelian extensions give rise to the same representation of (A,⋅,α).
Proof. (i) Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing two different sections s1,s2:A⟶ˆA, by equations (4.3), (4.4) and Theorem 4.3, we obtain two representations (V,β,ρ1,μ1) and (V,β,ρ2,μ2). Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x∈A, we have
ρ1(x)(u)−ρ2(x)(u)=s1(x)⋅ˆAu−s2(x)⋅ˆAu=(φ(x)+s2(x))⋅ˆAu−s2(x)⋅ˆAu=φ(x)⋅ˆAu=0, |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
(ii) Let (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Let s1:A1⟶^A1 and s2:A2⟶^A2 be two sections of (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) respectively. By equations (4.3), (4.4) and Theorem 4.3, we obtain that (V,β,ρ1,μ1) and (V,β,ρ2,μ2) are their representations respectively. Define s′1:A1⟶^A1 by s′1=ζ−1∘s2. Since ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4, by p2∘ζ=p1, we have
p1∘s′1=p2∘ζ∘ζ−1∘s2=IdA. | (4.13) |
Thus, we obtain that s′1 is a section of (^A1,⋅^A1,α^A1). For all x∈A,u∈V, we have
ρ1(x)(u)=s′1(x)⋅^A1u=(ζ−1∘s2)(x)⋅^A1u=ζ−1(s2(x)⋅^A2u)=ρ2(x)(u), |
which implies that ρ1=ρ2. Similarly, we have μ1=μ2. This finishes the proof.
So in the sequel, we fix a representation (V,β,ρ,μ) of a Hom-pre-Lie algebra (A,⋅,α) and consider abelian extensions that induce the given representation.
Theorem 4.6. Abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β) are classified by ˜H2(A;V).
Proof. Let (ˆA,⋅ˆA,αˆA) be an abelian extension of a Hom-pre-Lie algebra (A,⋅,α) by (V,β). Choosing a section s:A⟶ˆA, by Theorem 4.3, we obtain that (θ,ξ)∈˜Z2(A;V). Now we show that the cohomological class of (θ,ξ) does not depend on the choice of sections. In fact, let s1 and s2 be two different sections. Define φ:A⟶V by φ(x)=s1(x)−s2(x). Then for all x,y∈A, we have
θ1(x,y)=s1(x)⋅ˆAs1(y)−s1(x⋅y)=(s2(x)+φ(x))⋅ˆA(s2(y)+φ(y))−s2(x⋅y)−φ(x⋅y)=s2(x)⋅ˆAs2(y)+ρ(x)φ(y)+μ(y)φ(x)−s2(x⋅y)−φ(x⋅y)=θ2(x,y)+∂ωωφ(x,y), |
which implies that θ1−θ2=∂ωωφ.
For all x∈A, we have
ξ1(x)=αˆA(s1(x))−s1(α(x))=αˆA(φ(x)+s2(x))−φ(α(x))−s2(α(x))=αˆA(φ(x))+αˆA(s2(x))−φ(α(x))−s2(α(x))=ξ2(x)+β(φ(x))−φ(α(x)), |
which implies that ξ1−ξ2=∂ωαφ.
Therefore, we obtain that (θ1−θ2,ξ1−ξ2)∈˜B2(A;V), (θ1,ξ1) and (θ2,ξ2) are in the same cohomological class.
Now we prove that isomorphic abelian extensions give rise to the same element in ˜H2(A;V). Assume that (^A1,⋅^A1,α^A1) and (^A2,⋅^A2,α^A2) are two isomorphic abelian extensions of a Hom-pre-Lie algebra (A,⋅,α) by (V,β), and ζ:(^A1,⋅^A1,α^A1)⟶(^A2,⋅^A2,α^A2) is a Hom-pre-Lie algebra isomorphism satisfying the commutative diagram in Definition 4.4. Assume that s1:A⟶^A1 is a section of ^A1. By p2∘ζ=p1, we have
p2∘(ζ∘s1)=p1∘s1=IdA. | (4.14) |
Thus, we obtain that ζ∘s1 is a section of ^A2. Define s2=ζ∘s1. Since ζ is an isomorphism of Hom-pre-Lie algebras and ζ∣V=IdV, for all x,y∈A, we have
θ2(x,y)=s2(x)⋅^A2s2(y)−s2(x⋅y)=(ζ∘s1)(x)⋅^A2(ζ∘s1)(y)−(ζ∘s1)(x⋅y)=ζ(s1(x)⋅^A1s1(y)−s1(x⋅y))=θ1(x,y), |
and
ξ2(x)=α^A2(s2(x))−s2(α(x))=α^A2(ζ(s1(x)))−ζ(s1(α(x)))=ζ(α^A1(s1(x))−s1(α(x)))=ξ1(x). |
Thus, isomorphic abelian extensions gives rise to the same element in ˜H2(A;V).
Conversely, given two 2-cocycles (θ1,ξ1) and (θ2,ξ2), by Eqs (4.5) and (4.6), we can construct two abelian extensions (A⊕V,⋄1,ϕ1) and (A⊕V,⋄2,ϕ2). If (θ1,ξ1),(θ2,ξ2)∈˜H2(A;V), then there exists φ:A⟶V, such that θ1=θ2+∂ωωφ and ξ1=ξ2+∂ωαφ. We define ζ:A⊕V⟶A⊕V by
ζ(x+u)=x+u+φ(x),∀x∈A,u∈V. | (4.15) |
For all x,y∈A,u,v∈V, by θ1=θ2+∂ωωφ, we have
ζ((x+u)⋄1(y+v))−ζ(x+u)⋄2ζ(y+v)=ζ(x⋅y+θ1(x,y)+ρ(x)(v)+μ(y)(u))−(x+u+φ(x))⋄2(y+v+φ(y))=θ1(x,y)+φ(x⋅y)−θ2(x,y)−ρ(x)φ(y)−μ(y)φ(x)=θ1(x,y)−θ2(x,y)−∂ωωφ(x,y)=0, | (4.16) |
and for all x∈A,u∈V, by ξ1=ξ2+∂ωαφ, we have
ζ∘ϕ1(x+u)−ϕ1∘ζ(x+u)=ζ(α(x)+ξ1(x)+β(u))−ϕ2(x+u+φ(x))=ξ1(x)+φ(α(x))−ξ2(x)−β(φ(x))=ξ1(x)−ξ2(x)−∂ωαφ(x)=0, | (4.17) |
which implies that ζ is a Hom-pre-Lie algebra isomorphism from (A⊕V,⋄1,ϕ1) to (A⊕V,⋄2,ϕ2). Moreover, it is obvious that the diagram in Definition 4.4 is commutative. This finishes the proof.
By straightforward computations, for all x1,…,xn+2∈A, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂ωωφ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂ωωφ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂ωωφ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂ωωφ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+2) | (4.18) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+2) | (4.19) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.20) |
+∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))μ(αn−1(xn+2))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.21) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xi))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xn+2) | (4.22) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xi))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xn+2) | (4.23) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk),…,^α(xi),…,α(xn+2)) | (4.24) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi),…,^α(xk),…,α(xn+2)) | (4.25) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.26) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xj,…,^xi,…,xn+1,xi) | (4.27) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))ρ(αn−1(xj))φ(x1,…,^xi,…,^xj,…,xn+1,xi) | (4.28) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xj,…,^xi,…,xn+1,xj) | (4.29) |
+∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))μ(αn−1(xi))φ(x1,…,^xi,…,^xj,…,xn+1,xj) | (4.30) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn(xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xj⋅xi) | (4.31) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xj⋅xi) | (4.32) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xk), | (4.33) |
…,^α(xi),…,α(xn+1),α(xi))+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xj),…,^α(xi), | (4.34) |
…,^α(xk),…,α(xn+1),α(xi))+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))φ([xj,xk]C,α(x1),…,^α(xi),…,^α(xj), | (4.35) |
…,^α(xk),…,α(xn+1),α(xi))−∑1≤j<i≤n+1(−1)i+1(−1)j+1ρ(αn(xj))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),xi⋅xn+2) | (4.36) |
−∑1≤i<j≤n+1(−1)i+1(−1)jρ(αn(xj))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),xi⋅xn+2) | (4.37) |
−∑1≤j<i≤n+1(−1)i+1(−1)j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)) | (4.38) |
−∑1≤i<j≤n+1(−1)i+1(−1)jμ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj)) | (4.39) |
+∑1≤j<i≤n+1(−1)i+1(−1)j+1φ(α2(x1),…,^α2(xj),…,^α2(xi),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.40) |
+∑1≤i<j≤n+1(−1)i+1(−1)jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),α(xj)⋅(xi⋅xn+2)) | (4.41) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xk),…, | (4.42) |
^α2(xi),…,α2(xn+1),α(xi⋅xn+2))−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1φ([α(xj),α(xk)]C,α2(x1),…,^α2(xj),…,^α2(xi),…, | (4.43) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kφ([α(xj),α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…, | (4.44) |
^α2(xk),…,α2(xn+1),α(xi⋅xn+2))+∑1≤i<j≤n+1(−1)i+jρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.45) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…,^α(xj),…,α(xn+2)) | (4.46) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1ρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…,^α(xj),…,α(xn+2)) | (4.47) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kρ(αn(xk)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,^α(xk),…,α(xn+2)) | (4.48) |
+∑1≤k<i<j≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xk),…,^α(xi),…, | (4.49) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1μ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xk),…, | (4.50) |
^α(xj),…,α(xn+1),α(xk))+∑1≤i<j<k≤n+1(−1)i+j(−1)kμ(αn(xn+2)))φ([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…, | (4.51) |
^α(xk),…,α(xn+1),α(xk))+∑1≤i<j≤n+1(−1)i+jμ(αn(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),[xi,xj]C) | (4.52) |
−∑1≤k<i<j≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj), | (4.53) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj), | (4.54) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j<k≤n+1(−1)i+j(−1)kφ(α[xi,xj]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk), | (4.55) |
…,α2(xn+1),α(xk)⋅α(xn+2))−∑1≤i<j≤n+1(−1)i+jφ(α2(x1),…,^α2(xi),…,^α2(xj),…,α2(xn+1),[xi,xj]C⋅α(xn+2)) | (4.56) |
+∑1≤k<l<i<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.57) |
^α2(xl),…,^α2(xi),…,^α2(xj),…,α2(xn+2))+∑1≤k<i<l<j≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.58) |
^α2(xi),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<k<l<j≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.59) |
^α2(xk),…,^α2(xl),…,^α2(xj),…,α2(xn+2))+∑1≤i<j<k<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.60) |
^α2(xj),…,^α2(xk),…,^α2(xl),…,α2(xn+2))+∑1≤i<k<j<l≤n+1(−1)i+j(−1)k+l+1φ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xi),…, | (4.61) |
^α2(xk),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j<l≤n+1(−1)i+j(−1)k+lφ([α(xk),α(xl)]C,α[xi,xj]C,α2(x1),…,^α2(xk),…, | (4.62) |
^α2(xi),…,^α2(xj),…,^α2(xl),…,α2(xn+2))+∑1≤k<i<j≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xk),…,^α2(xi),…,^α2(xj),…,α2(xn+2)) | (4.63) |
+∑1≤i<k<j≤n+1(−1)i+j(−1)k+1φ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xk),…,^α2(xj),…,α2(xn+2)) | (4.64) |
+∑1≤i<j<k≤n+1(−1)i+j(−1)kφ([[xi,xj]C,α(xk)]C,α2(x1),…,^α2(xi),…,^α2(xj),…,^α2(xk),…,α2(xn+2)). | (4.65) |
The terms (4.22) and (4.37), (4.23) and (4.36), (4.24) and (4.48), (4.25) and (4.47), (4.26) and (4.46), (4.33) and (4.51), (4.34) and (4.50), (4.35) and (4.49) cancel each other. By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.63), (4.64) and (4.65) is zero. By the antisymmetry condition, the term (4.57) and (4.60), (4.58) and (4.61), (4.59) and (4.62) cancel each other. By the definition of the sub-adjacent Lie bracket, the sum of (4.31), (4.32) and (4.52) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.40), (4.41) and (4.56) is zero. Since α is an algebra morphism, the term (4.42) and (4.55), (4.43) and (4.54), (4.44) and (4.53) cancel each other.
Since (V,β,ρ,μ) is a representation of the Hom-pre-Lie algebra (A,⋅,α), the sum of (4.18) and (4.19) can be written as
∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2), | (4.66) |
the sum of (4.20), (4.28) and (4.29) can be written as
−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj), | (4.67) |
and the sum of (4.21), (4.27) and (4.30) can be written as
∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj). | (4.68) |
Thus, we have
∂ωω(∂ωωφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+j+1ρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),+∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xj,…,^xi,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+j+1ρ(αn−1[xi,xj]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))−∑1≤i<j≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))+∑1≤j<i≤n+1(−1)i+j+1μ(αn−1(xi⋅xn+2))φ(α(x1),…,^α(xj),…,^α(xi),…,α(xn+1),α(xj)). |
For all x1,…,xn+2∈A, we have
∂αω(∂ωαφ)(x1,…,xn+2)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+2)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))(∂ωαφ)(x1,…,^xi,…,^xj,…,xn+1,xi)=∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)βφ(x1,…,^xi,…,^xj,…,xn+2),−∑1≤i<j≤n+1(−1)i+jρ([αn−1(xi),αn−1(xj)]C)φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xj)−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xi)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xj))−∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))βφ(x1,…,^xi,…,^xj,…,xn+1,xi)+∑1≤i<j≤n+1(−1)i+jμ(αn−1(xj)⋅αn−1(xn+2))φ(α(x1),…,^α(xi),…,^α(xj),…,α(xn+1),α(xi)). |
Since α is an algebra morphism, we obtain that ∂ωω∘∂ωω+∂αω∘∂ωα = 0.
For all x1,…,xn+2∈A, we have
∂ωω(∂αωψ)(x1,…,xn+2)=n+1∑i=1(−1)i+1ρ(αn(xi))(∂αωψ)(x1,…,^xi,…,xn+2)+n+1∑i=1(−1)i+1μ(αn(xn+2))(∂αωψ)(x1,…,^xi,…,xn+1,xi)−n+1∑i=1(−1)i+1(∂αωψ)(α(x1),…,^α(xi),…,α(xn+1),xi⋅xn+2)+∑1≤i<j≤n+1(−1)i+j(∂αωψ)([xi,xj]C,α(x1),…,^α(xi),…,^α(xj),…,α(xn+2))=∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+2) | (4.69) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+2) | (4.70) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+2) | (4.71) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.72) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.73) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xj)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.74) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.75) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.76) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ(αn(xi))μ(αn−2(xk)⋅αn−2(xn+2))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.77) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xi) | (4.78) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xi) | (4.79) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))ρ([αn−2(xj),αn−2(xk)]C)ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xi) | (4.80) |
+∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xk) | (4.81) |
+∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xk) | (4.82) |
+∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xj)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xk) | (4.83) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xk…,^xi,…,xn+1,xj) | (4.84) |
−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1μ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xj,…,^xi…,^xk,…,xn+1,xj) | (4.85) |
−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kμ(αn(xn+2))μ(αn−2(xk)⋅αn−2(xi))ψ(x1,…,^xi,…,^xj…,^xk,…,xn+1,xj) | (4.86) |
−∑1≤j<k<i≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xk), | (4.87) |
…,^α(xi),…,α(xn+1),xi⋅xn+2)−∑1≤j<i<k≤n+1(−1)i+1(−1)j+k−1ρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xj),…,^α(xi), | (4.88) |
…,^α(xk),…,α(xn+1),xi⋅xn+2)−∑1≤i<j<k≤n+1(−1)i+1(−1)j+kρ([αn−1(xj),αn−1(xk)]C)ψ(α(x1),…,^α(xi),…,^α(xj), | (4.89) |
(4.90) |
(4.91) |
(4.92) |
(4.93) |
(4.94) |
(4.95) |
(4.96) |
(4.97) |
(4.98) |
(4.99) |
(4.100) |
(4.101) |
(4.102) |
(4.103) |
(4.104) |
(4.105) |
(4.106) |
(4.107) |
(4.108) |
(4.109) |
(4.110) |
(4.111) |
(4.112) |
(4.113) |
(4.114) |
(4.115) |
(4.116) |
(4.117) |
(4.118) |
(4.119) |
(4.120) |
(4.121) |
(4.122) |
and
(4.123) |
(4.124) |
(4.125) |
(4.126) |
(4.127) |
(4.128) |
(4.129) |
(4.130) |
(4.131) |
(4.132) |
(4.133) |
(4.134) |
(4.135) |
(4.136) |
(4.137) |
(4.138) |
(4.139) |
(4.140) |
(4.141) |
(4.142) |
(4.143) |
(4.144) |
(4.145) |
(4.146) |
(4.147) |
(4.148) |
(4.149) |
(4.150) |
(4.151) |
(4.152) |
(4.153) |
(4.154) |
(4.155) |
(4.156) |
(4.157) |
(4.158) |
(4.159) |
(4.160) |
(4.161) |
(4.162) |
(4.163) |
(4.164) |
(4.165) |
(4.166) |
(4.167) |
By the definition of the sub-adjacent Hom-Lie algebra, the sum of (4.102), (4.103) and (4.104) is zero. By the definition of Hom-pre-Lie algebras, the sum of (4.90), (4.95) and (4.118) is zero, the sum of (4.91), (4.92) and (4.119) is zero, the sum of (4.93), (4.94) and (4.117) is zero. Obviously, the sum of (4.96) and (4.137) is zero, the sum of (4.97) and (4.136) is zero, the sum of (4.98) and (4.135) is zero, the sum of (4.99) and (4.134) is zero, the sum of (4.100) and (4.133) is zero, the sum of (4.101) and (4.132) is zero, the sum of (4.87) and (4.131) is zero, the sum of (4.88) and (4.130) is zero, the sum of (4.89) and (4.129) is zero, the sum of (4.105) and (4.152) is zero, the sum of (4.106) and (4.151) is zero, the sum of (4.107) and (4.150) is zero, the sum of (4.108) and (4.149) is zero, the sum of (4.109) and (4.148) is zero, the sum of (4.110) and (4.147) is zero, the sum of (4.111) and (4.167) is zero, the sum of (4.112) and (4.166) is zero, the sum of (4.113) and (4.165) is zero, the sum of (4.114) and (4.164) is zero, the sum of (4.115) and (4.163) is zero, the sum of (4.116) and (4.162) is zero. By the definition of the sub-adjacent Lie bracket, the sum of (4.120), (4.145) and (4.146) is zero, the sum of (4.121), (4.144) and (4.161) is zero, the sum of (4.122), (4.159) and (4.160) is zero. Since is a representation of the sub-adjacent Hom-Lie algebra , the sum of (4.69), (4.70), (4.71), (4.123), (4.124) and (4.125) is zero. Since is a representation of the Hom-pre-Lie algebra , the sum of (4.73), (4.74), (4.78), (4.82), (4.83), (4.128), (4.138), (4.139), (4.143) and (4.158) is zero, the sum of (4.72), (4.77), (4.79), (4.81), (4.86), (4.127), (4.140), (4.142), (4.153) and (4.157) is zero, the sum of (4.75), (4.76), (4.80), (4.84), (4.85), (4.126), (4.141), (4.154), (4.155) and (4.156) is zero. Thus, we have .
Similarly, we have and . This finishes the proof.
We give warmest thanks to Yunhe Sheng for helpful comments that improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 12001226).
The authors declare there is no conflicts of interest.
[1] |
Ferrer-Gallego R, Puxeu M, Nart E, et al. (2017) Evaluation of Tempranillo and Albariño SO2-free wines produced by different chemical alternatives and winemaking procedures. Food Res Int 102: 647-657. https://doi.org/10.1016/j.foodres.2017.09.046 ![]() |
[2] |
Guerrero RF, Cantos-Villar E (2015) Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci Technol 42: 27-43. https://doi.org/10.1016/j.tifs.2014.11.004 ![]() |
[3] |
Christofi S, Malliaris D, Katsaros G, et al. (2020) Limit SO2 content of wines by applying High Hydrostatic Pressure. Innov Food Sci Emerg Technol 62: 102342. https://doi.org/10.1016/j.ifset.2020.102342 ![]() |
[4] |
Santos MC, Nunes C, Cappelle J, et al. (2013) Effect of high pressure treatments on the physicochemical properties of a sulphur dioxide-free red wine. Food Chem 141: 2558-2566. https://doi.org/10.1016/j.foodchem.2013.05.022 ![]() |
[5] |
Roullier-Gall C, Hemmler D, Gonsior M, et al. (2017) Sulfites and the wine metabolome. Food Chem 237: 106-113. https://doi.org/10.1016/j.foodchem.2017.05.039 ![]() |
[6] |
Di Gianvito P, Englezos V, Rantsiou K, et al. (2022) Bioprotection strategies in winemaking. Int J Food Microbiol 364: 109532. https://doi.org/10.1016/j.ijfoodmicro.2022.109532 ![]() |
[7] |
Ferraz P, Cassio F, Lucas C (2019) Potential of yeasts as biocontrol agents of the phytopathogen causing cacao witches' broom disease: Is microbial warfare a solution?. Front Microbiol 10: 1766. https://doi.org/10.3389/fmicb.2019.01766 ![]() |
[8] |
Keswani C, Singh HB, Hermosa R, et al. (2019) Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl Microbiol Biotechnol 103: 9287-9303. https://doi.org/10.1007/s00253-019-10209-2103 ![]() |
[9] | OIV (International Organisation of Vine and Wine)Recueil des methodes internationales d'analyses des vins et des moûts (2010). Avaible from: https://www.oiv.int/fr/normes-et-documents-techniques/methodes-danalyse/recueil-des-methodes-internationales-danalyse-des-vins-et-des-mouts-2-vol |
[10] | Directive 2003/89/EC of the European parliament and of the council amending directive 2000/13/EC as regards indication of the ingredients present in foodstuffs. Avaible from: http://data.europa.eu/eli/dir/2003/89/oj |
[11] |
Lisanti MT, Blaiotta G, Nioi C, et al. (2019) Alternative methods to SO2 for microbiological stabilization of wine. Compr Rev Food Sci Food Saf 18: 455-479. https://doi.org/10.1111/1541-4337.12422 ![]() |
[12] |
Silva M, Gama J, Pinto N, et al. (2019) Sulfite concentration and the occurrence of headache in young adults: A prospective study. Eur J Clin Nutr 73: 1316-1322. https://doi.org/10.1038/s41430-019-0420-2 ![]() |
[13] |
Santos MC, Nunes C, Rocha MAM, et al. (2015) High pressure treatments accelerate changes in volatile composition of sulphur dioxide-free wine during bottle storage. Food Chem 188: 406-414. https://doi.org/10.1016/j.foodchem.2015.05.002 ![]() |
[14] |
Fredericks IN, du Toit M, Krügel M (2011) Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol 28: 510-517. https://doi.org/10.1016/j.fm.2010.10.018 ![]() |
[15] |
Pandin C, Le Coq D, Canette A, et al. (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?. Microb Biotechnol 10: 719-734. https://doi.org/10.1111/1751-7915.12693 ![]() |
[16] |
Bauer MA, Kainz K, Carmona-Gutierrez D, et al. (2018) Microbial wars: Competition in ecological niches and within the microbiome. Microb Cell 5: 215. https://doi.org/10.15698/mic2018.05.628 ![]() |
[17] |
Parijs I, Steenackers HP (2018) Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. ISME J 12: 2061-2075. https://doi.org/10.1038/s41396-018-0146-5 ![]() |
[18] |
Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24: 833-845. https://doi.org/10.1016/j.tim.2016.06.011 ![]() |
[19] |
Curiel JA, Morales P, Gonzalez R, et al. (2017) Different non-Saccharomyces yeast species stimulate nutrient consumption in Saccharomyces cerevisiae mixed cultures. Front Microbiol 8: 2121. https://doi.org/10.3389/fmicb.2017.02121 ![]() |
[20] |
Petitgonnet C, Klein GL, Roullier-Gall C, et al. (2019) Influence of cell-cell contact between L. thermotolerans and S. cerevisiae on yeast interactions and the exo-metabolome. Food Microbiol 83: 122-133. https://doi.org/10.1016/j.fm.2019.05.005 ![]() |
[21] |
Prior KJ, Bauer FF, Divol B (2019) The utilisation of nitrogenous compound by commercial non-Saccharomyces yeasts associated with wine. Food Microbiol 79: 75-84. https://doi.org/10.1016/j.fm.2018.12.002 ![]() |
[22] |
Siedler S, Balti R, Neves AR (2019) Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 56: 138-146. https://doi.org/10.1016/j.copbio.2018.11.015 ![]() |
[23] |
Pallmann CL, Brown JA, Olineka TL, et al. (2001) Use of WL medium to profile native flora fermentations. Am J Enol Vitic 52: 198-203. http://dx.doi.org/10.5344/ajev.2001.52.3.198 ![]() |
[24] |
Couto MB, Reizinho RG, Duarte FL (2005) Partial 26S rDNA restriction analysis as a tool to characterise non-Saccharomyces yeasts present during red wine fermentations. Int J Food Microbiol 102: 49-56. https://doi.org/10.1016/j.ijfoodmicro.2005.01.005 ![]() |
[25] | ISO 15214Microbiology of food and animal feeding stuffs–Horizontal method for the enumeration of mesophilic lactic acid bacteria–Colony-count technique at 30 °C (1998). |
[26] | OIV (International Organisation of Vine and Wine)Compendium of international methods of wine and must analysis (2020). Available from: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol |
[27] | OIV (International Organisation of Vine and Wine)Compendium of international methods of wine and must analysis (2020). Available from: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol |
[28] |
Matraxia M, Alfonzo A, Prestianni R, et al. (2021) Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiol 99: 103806. https://doi.org/10.1016/j.fm.2021.103806 ![]() |
[29] |
Chawafambira A (2021) The effect of incorporating herbal (Lippia javanica) infusion on the phenolic, physicochemical, and sensorial properties of fruit wine. Food Sci Nutr 9: 4539-4549. https://doi.org/10.1002/fsn3.2432 ![]() |
[30] |
Francesca N, Naselli V, Prestianni R, et al. (2024) Impact of two new non-conventional yeasts, Candida oleophila and Starmerella lactis-condensi, isolated from sugar-rich substrates, on Frappato wine aroma. Food Biosci 57: 103500. https://doi.org/10.1016/j.fbio.2023.103500 ![]() |
[31] | Jackson RS (2016) Wine Tasting: A Professional Handbook. Boston: Academic Press. |
[32] |
Issa-Issa H, Guclu G, Noguera-Artiaga L, et al. (2020) Aroma-active compounds, sensory profile, and phenolic composition of Fondillón. Food Chem 316: 126353. https://doi.org/10.1016/j.foodchem.2020.126353 ![]() |
[33] |
Cochran WG, Cox GM (1957) Experimental designs. New York: John Wiley & Sons. |
[34] |
Di Maro E, Ercolini D, Coppola S (2007) Yeast dynamics during spontaneous wine fermentation of the Catalanesca grape. Int J Food Microbiol 117: 201-210. https://doi.org/10.1016/j.ijfoodmicro.2007.04.007 ![]() |
[35] |
Varela C, Sengler F, Solomon M, et al. (2016) Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 209: 57-64. https://doi.org/10.1016/j.foodchem.2016.04.024 ![]() |
[36] | González SS, Barrio E, Querol A (2007) Molecular identification and characterization of wine yeasts isolated from Tenerife (Canary Island, Spain). J Appl Microbiol 102: 1018-1025. https://doi.org/10.1111/j.1365-2672.2006.03150.x |
[37] |
Sannino C, Francesca N, Corona O, et al. (2013) Effect of the natural winemaking process applied at industrial level on the microbiological and chemical characteristics of wine. J Biosci Bioeng 116: 347-356. https://doi.org/10.1016/j.jbiosc.2013.03.005 ![]() |
[38] |
Minebois R, Pérez-Torrado R, Querol A (2020) A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation. Food Microbiol 90: 103484. https://doi.org/10.1016/j.fm.2020.103484 ![]() |
[39] |
Morgan SC, Haggerty JJ, Johnston B, et al. (2019) Response to sulfur dioxide addition by two commercial Saccharomyces cerevisiae strains. Fermentation 5: 69. https://doi.org/10.3390/fermentation5030069 ![]() |
[40] |
Csoma H, Kállai Z, Czentye K, et al. (2023) Starmerella lactis-condensi, a yeast that has adapted to the conditions in the oenological environment. Int J Food Microbiol 401: 110282. https://doi.org/10.1016/j.ijfoodmicro.2023.110282 ![]() |
[41] |
Alfonzo A, Prestianni R, Gaglio R, et al. (2021) Effects of different yeast strains, nutrients and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines. Int J Food Microbiol 360: 109325. https://doi.org/10.1016/j.ijfoodmicro.2021.109325 ![]() |
[42] |
Windholtz S, Nioi C, Coulon J, et al. (2023) Bioprotection by non-Saccharomyces yeasts in oenology: Evaluation of O2 consumption and impact on acetic acid bacteria. Int J Food Microbiol 405: 110338. https://doi.org/10.1016/j.ijfoodmicro.2023.110338 ![]() |
[43] | Catarino A, Alves S, Mira H (2014) Influence of technological operations in the dissolved oxygen content of wines. J Chem Chem Eng 8: 390-394. https://doi.org/10.17265/1934-7375%2F2014.04.010 |
[44] |
Darias-Martı́n J, Dı́az-González D, Dı́az-Romero C (2004) Influence of two pressing processes on the quality of must in white wine production. J Food Eng 63: 335-340. https://doi.org/10.1016/j.jfoodeng.2003.08.005 ![]() |
[45] |
Villano D, Fernández-Pachón MS, Troncoso AM, et al. (2006) Influence of enological practices on the antioxidant activity of wines. Food Chem 95: 394-404. https://doi.org/10.1016/j.foodchem.2005.01.005 ![]() |
[46] |
Selli S, Cabaroglu T, Canbas A, et al. (2004) Volatile composition of red wine from cv. Kalecik Karasι grown in central Anatolia. Food Chem 85: 207-213. https://doi.org/10.1016/j.foodchem.2003.06.008 ![]() |
[47] |
Cañas PI, Romero EG, Alonso SG, et al. (2008) Changes in the aromatic composition of Tempranillo wines during spontaneous malolactic fermentation. J Food Compos Anal 21: 724-730. https://doi.org/10.1016/j.jfca.2007.12.005 ![]() |
[48] |
Fariña L, Villar V, Ares G, et al. (2015) Volatile composition and aroma profile of Uruguayan Tannat wines. Food Res Int 69: 244-255. https://doi.org/10.1016/j.foodres.2014.12.029 ![]() |
[49] |
De Lerma NL, Bellincontro A, Mencarelli F, et al. (2012) Use of electronic nose, validated by GC–MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem 130: 447-452. https://doi.org/10.1016/j.foodchem.2011.07.058 ![]() |
[50] | Li H (2006) Wine Tasting. Beijing: China Science Press 29-106. |
[51] |
Li H, Tao YS, Wang H, et al. (2008) Impact odorants of Chardonnay dry white wine from Changli County (China). Eur Food Res Technol 227: 287-292. https://doi.org/10.1007/s00217-007-0722-9 ![]() |
[52] |
Ferreira V, López R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80: 1659-1667. https://doi.org/10.1002/1097-0010(20000901)80:11%3C1659::AID-JSFA693%3E3.0.CO;2-6 ![]() |
[53] |
Gómez-Míguez MJ, Cacho JF, Ferreira V, et al. (2007) Volatile components of Zalema white wines. Food Chem 100: 1464-1473. https://doi.org/10.1016/j.foodchem.2005.11.045 ![]() |
[54] |
Guth H (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45: 3027-3032. https://doi.org/10.1021/jf970280a ![]() |
[55] |
Rocha SM, Rodrigues F, Coutinho P, et al. (2004) Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Anal Chim Acta 513: 257-262. https://doi.org/10.1016/j.aca.2003.10.009 ![]() |
[56] | Lloret A, Boido E, Lorenzo D, et al. (2002) Aroma variation in Tannat wines: Effect of malolactic fermentation on ethyl lactate level and its enantiomeric distribution. Ital J Food Sci 14: 175-180. http://hdl.handle.net/10449/18119 |
[57] |
Delgado JA, Sánchez-Palomo E, Alises MO, et al. (2022) Chemical and sensory aroma typicity of La Mancha Petit Verdot wines. LWT 162: 113418. https://doi.org/10.1016/j.lwt.2022.113418 ![]() |
[58] |
Yao M, Wang F, Arpentin G (2023) Bioprotection as a tool to produce natural wine: Impact on physicochemical and sensory analysis. BIO Web Conf 56: 02019. https://doi.org/10.1051/bioconf/20235602019 ![]() |
[59] |
Bayram M, Kayalar M (2018) White wines from Narince grapes: Impact of two different grape provenances on phenolic and volatile composition. OENO One 52: 81-92. https://doi.org/10.20870/oeno-one.2018.52.2.2114 ![]() |
[60] |
Zoecklein BW, Fugelsang KC, Gump BH, et al. (1995) Volatile acidity. Wine Analysis and Production . New York: Springer 192-198. https://doi.org/10.1007/978-1-4757-6978-4_11 ![]() |
[61] |
Canonico L, Comitini F, Ciani M (2019) Metschnikowia pulcherrima selected strain for ethanol reduction in wine: Influence of cell immobilization and aeration condition. Foods 8: 378. https://doi.org/10.3390%2Ffoods8090378 ![]() |
[62] |
Laguna L, Sarkar A, Bryant MG, et al. (2017) Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Res Int 102: 478-486. https://doi.org/10.1016/j.foodres.2017.09.009 ![]() |
1. | Shuangjian Guo, Ripan Saha, On α-type (equivariant) cohomology of Hom-pre-Lie algebras, 2023, 0092-7872, 1, 10.1080/00927872.2023.2243514 |