Citation: Anshuman Swain, William F Fagan. A mathematical model of the Warburg Effect: Effects of cell size, shape and substrate availability on growth and metabolism in bacteria[J]. Mathematical Biosciences and Engineering, 2019, 16(1): 168-186. doi: 10.3934/mbe.2019009
[1] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[2] | Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311 |
[3] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[4] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[9] | Shuhui Yang, Yan Lin . Multilinear strongly singular integral operators with generalized kernels and applications. AIMS Mathematics, 2021, 6(12): 13533-13551. doi: 10.3934/math.2021786 |
[10] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
Let T be the Calderón-Zygmund singular integral operator and b be a locally integrable function on Rn. The commutator generated by b and T is defined by [b,T]f=bT(f)−T(bf). The investigation of the commutator begins with Coifman-Rochberg-Weiss pioneering study and classical result (see [6]). The classical result of Coifman, Rochberg and Weiss (see [6]) states that the commutator [b,T]f=T(bf)−bTf is bounded on Lp(Rn) for 1<p<∞ if and only if b∈BMO(Rn). The major reason for considering the problem of commutators is that the boundedness of commutator can produces some characterizations of function spaces (see [1,6]). Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator. In [11], the boundedness properties of the commutators for the extreme values of p are obtained. In recent years, the theory of Herz space and Herz type Hardy space, as a local version of Lebesgue space and Hardy space, have been developed (see [8,9,12,13]). The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type fractional singular integral operators on Herz and Herz type Hardy spaces.
First, let us introduce some notations (see [8,9,10,12,13,15]). Throughout this paper, Q will denote a cube of Rn with sides parallel to the axes. For a cube Q and a locally integrable function f, let fQ=|Q|−1∫Qf(x)dx and f#(x)=supQ∋x|Q|−1∫Q|f(y)−fQ|dy. Moreover, f is said to belong to BMO(Rn) if f#∈L∞ and define ||f||BMO=||f#||L∞; We also define the central BMO space by CMO(Rn), which is the space of those functions f∈Lloc(Rn) such that
||f||CMO=supr>1|Q(0,r)|−1∫Q|f(y)−fQ|dy<∞. |
It is well-known that (see [9,10])
||f||CMO≈supr>1infc∈C|Q(0,r)|−1∫Q|f(x)−c|dx. |
For k∈Z, define Bk={x∈Rn:|x|≤2k} and Ck=Bk∖Bk−1. Denote by χk the characteristic function of Ck and ˜χk the characteristic function of Ck for k≥1 and ˜χ0 the characteristic function of B0.
Definition 1. Let 0<p<∞ and α∈R.
(1) The homogeneous Herz space ˙Kαp(Rn) is defined by
˙Kαp(Rn)={f∈Lploc(Rn∖{0}):||f||˙Kαp<∞}, |
where
||f||˙Kαp=∞∑k=−∞2kα||fχk||Lp; |
(2) The nonhomogeneous Herz space Kαp(Rn) is defined by
Kαp(Rn)={f∈Lploc(Rn):||f||Kαp<∞}, |
where
||f||Kαp=∞∑k=02kα||f˜χk||Lp. |
If α=n(1−1/p), we denote that ˙Kαp(Rn)=˙Kp(Rn), Kαp(Rn)=Kp(Rn).
Definition 2. Let 0<δ<n and 1<p<n/δ. We shall call Bδp(Rn) the space of those functions f on Rn such that
||f||Bδp=supd>1d−n(1/p−δ/n)||fχQ(0,d)||Lp<∞. |
Definition 3. Let 1<p<∞.
(1) The homogeneous Herz type Hardy space H˙Kp(Rn) is defined by
H˙Kp(Rn)={f∈S′(Rn):G(f)∈˙Kp(Rn)}, |
where
||f||H˙Kp=||G(f)||˙Kp. |
(2) The nonhomogeneous Herz type Hardy space HKp(Rn) is defined by
HKp(Rn)={f∈S′(Rn):G(f)∈Kp(Rn)}, |
where
||f||HKp=||G(f)||Kp. |
where G(f) is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let 1<p<∞. A function a(x) on Rn is called a central (n(1−1/p),p)-atom (or a central (n(1−1/p),p)-atom of restrict type), if
1) Suppa⊂B(0,d) for some d>0 (or for some d≥1),
2) ||a||Lp≤|B(0,d)|1/p−1,
3) ∫a(x)dx=0.
Lemma 1. (see [9,13]) Let 1<p<∞. A temperate distribution f belongs to H˙Kp(Rn)(or HKp(Rn)) if and only if there exist central (n(1−1/p),p)-atoms(or central (n(1−1/p),p)-atoms of restrict type) aj supported on Bj=B(0,2j) and constants λj, ∑j|λj|<∞ such that f=∑∞j=−∞λjaj (or f=∑∞j=0λjaj)in the S′(Rn) sense, and
||f||H˙Kp( or ||f||HKp)≈∑j|λj|. |
In this paper, we will consider a class of multilinear operators related to some non-convolution type singular integral operators, whose definition are following.
Let m be a positive integer and A be a function on Rn. We denote that
Rm+1(A;x,y)=A(x)−∑|β|≤m1β!DβA(y)(x−y)β |
and
Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!DβA(x)(x−y)β. |
Definition 5. Fixed ε>0 and 0<δ<n. Let Tδ:S→S′ be a linear operator. Tδ is called a fractional singular integral operator if there exists a locally integrable function K(x,y) on Rn×Rn such that
Tδ(f)(x)=∫RnK(x,y)f(y)dy |
for every bounded and compactly supported function f, where K satisfies:
|K(x,y)|≤C|x−y|−n+δ |
and
|K(y,x)−K(z,x)|+|K(x,y)−K(x,z)|≤C|y−z|ε|x−z|−n−ε+δ |
if 2|y−z|≤|x−z|. The multilinear operator related to the fractional singular integral operator Tδ is defined by
TAδ(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy; |
We also consider the variant of TAδ, which is defined by
˜TAδ(f)(x)=∫RnQm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Note that when m=0, TAδ is just the commutators of Tδ and A (see [1,6,11,14]). It is well known that multilinear operator, as a non-trivial extension of commutator, is of great interest in harmonic analysis and has been widely studied by many authors (see [3,4,5]). In [7], the weighted Lp(p>1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In [2], the weak (H1, L1)-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators TAδ and ˜TAδ on Herz and Herz type Hardy spaces.
Now we state our results as following.
Theorem 1. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that TAδ is the same as in Definition 5 such that Tδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞] with 1/q=1/p−δ/n. Then TAδ is bounded from Bδp(Rn) to CMO(Rn).
Theorem 2. Let 0<δ<n, 1<p<n/δ, 1/q=1/p−δ/n and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then ˜TAδ is bounded from H˙Kp(Rn) to ˙Kαq(Rn) with α=n(1−1/p).
Theorem 3. Let 0<δ<n, 1<p<n/δ and DβA∈BMO(Rn) for all β with |β|=m. Suppose that ˜TAδ is the same as in Definition 5 such that ˜TAδ is bounded from Lp(Rn) to Lq(Rn) for any p,q∈(1,+∞) with 1/q=1/p−δ/n. Then the following two statements are equivalent:
(ⅰ) ˜TAδ is bounded from Bδp(Rn) to CMO(Rn);
(ⅱ) for any cube Q and z∈3Q∖2Q, there is
1|Q|∫Q|∑|β|=m1β!|DβA(x)−(DβA)Q|∫(4Q)cKβ(z,y)f(y)dy|dx≤C||f||Bδp, |
where Kβ(z,y)=(z−y)β|z−y|mK(z,y) for |β|=m.
Remark. Theorem 2 is also hold for nonhomogeneous Herz and Herz type Hardy space.
To prove the theorem, we need the following lemma.
Lemma 2. (see [5]) Let A be a function on Rn and DβA∈Lq(Rn) for |β|=m and some q>n. Then
|Rm(A;x,y)|≤C|x−y|m∑|β|=m(1|˜Q(x,y)|∫˜Q(x,y)|DβA(z)|qdz)1/q, |
where ˜Q(x,y) is the cube centered at x and having side length 5√n|x−y|.
Proof of Theorem 1. It suffices to prove that there exists a constant CQ such that
1|Q|∫Q|TAδ(f)(x)−CQ|dx≤C||f||Bδp |
holds for any cube Q=Q(0,d) with d>1. Fix a cube Q=Q(0,d) with d>1. Let ˜Q=5√nQ and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ, then Rm+1(A;x,y)=Rm+1(˜A;x,y) and Dβ˜A=DβA−(DβA)˜Q for all β with |β|=m. We write, for f1=fχ˜Q and f2=fχRn∖˜Q,
TAδ(f)(x)=∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f(y)dy=∫RnRm(˜A;x,y)|x−y|mK(x,y)f1(y)dy−∑|β|=m1β!∫RnK(x,y)(x−y)β|x−y|mDβ˜A(y)f1(y)dy+∫RnRm+1(˜A;x,y)|x−y|mK(x,y)f2(y)dy, |
then
1|Q|∫Q|TAδ(f)(x)−T˜Aδ(f2)(0)|dx≤1|Q|∫Q|Tδ(Rm(˜A;x,⋅)|x−⋅|mf1)(x)|dx+∑|β|=m1β!1|Q|∫Q|Tδ((x−⋅)β|x−⋅|mDβ˜Af1)(x)|dx+|T˜Aδ(f2)(x)−T˜Aδ(f2)(0)|dx:=I+II+III. |
For I, note that for x∈Q and y∈˜Q, using Lemma 2, we get
Rm(˜A;x,y)≤C|x−y|m∑|β|=m||DβA||BMO, |
thus, by the Lp(Rn) to Lq(Rn)-boundedness of TAδ for 1<p,q<∞ with 1/q=1/p−δ/n, we get
I≤C|Q|∫Q|Tδ(∑|β|=m||DβA||BMOf1)(x)|dx≤C∑|β|=m||DβA||BMO(1|Q|∫Q|Tδ(f1)(x)|qdx)1/q≤C∑|β|=m||DβA||BMO|Q|−1/q||f1||Lp≤C∑|β|=m||DβA||BMOr−n(1/p−δ/n)||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For II, taking 1<s<p such that 1/r=1/s−δ/n, by the (Ls,Lr)-boundedness of Tδ and Holder's inequality, we gain
II≤C|Q|∫Q|Tδ(∑|β|=m(DβA−(DβA)˜Q)f1)(x)|dx≤C∑|β|=m(1|Q|∫Q|Tδ((DβA−(DβA)˜Q)f1)(x)|rdx)1/r≤C|Q|−1/r∑|β|=m||(DβA−(DβA)˜Q)f1||Ls≤C|Q|−1/r||f1||Lp∑|β|=m(1|Q|∫˜Q|DβA(y)−(DβA)˜Q|ps/(p−s)dy)(p−s)/(ps)|Q|(p−s)/(ps)≤C∑|β|=m||DβA||BMOr−n/q||fχ˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
To estimate III, we write
T˜Aδ(f2)(x)−T˜Aδ(f2)(0)=∫Rn[K(x,y)|x−y|m−K(0,y)|y|m]Rm(˜A;x,y)f2(y)dy+∫RnK(0,y)f2(y)|y|m[Rm(˜A;x,y)−Rm(˜A;0,y)]dy−∑|β|=m1β!∫Rn(K(x,y)(x−y)β|x−y|m−K(0,y)(−y)β|y|m)Dβ˜A(y)f2(y)dy:=III1+III2+III3. |
By Lemma 2 and the following inequality (see [15])
|bQ1−bQ2|≤Clog(|Q2|/|Q1|)||b||BMO for Q1⊂Q2, |
we know that, for x∈Q and y∈2k+1˜Q∖2k˜Q,
|Rm(˜A;x,y)|≤C|x−y|m∑|β|=m(||DβA||BMO+|(DβA)˜Q(x,y)−(DβA)˜Q|)≤Ck|x−y|m∑|β|=m||DβA||BMO. |
Note that |x−y|∼|y| for x∈Q and y∈Rn∖˜Q, we obtain, by the condition of K,
|III1|≤C∫Rn(|x||y|m+n+1−δ+|x|ε|y|m+n+ε−δ)|Rm(˜A;x,y)||f2(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Qk(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|f(y)|dy≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1k(2−k+2−εk)||f||Bδp≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III2, by the formula (see [5]):
Rm(˜A;x,y)−Rm(˜A;x0,y)=∑|γ|<m1γ!Rm−|γ|(Dγ˜A;x,x0)(x−y)γ |
and Lemma 2, we have
|Rm(˜A;x,y)−Rm(˜A;x0,y)|≤C∑|γ|<m∑|β|=m|x−x0|m−|γ||x−y||γ|||DβA||BMO, |
thus, similar to the estimates of III1, we get
|III2|≤C∑|β|=m||DβA||BMO∞∑k=0∫2k+1˜Q∖2k˜Q|x||y|n+1−δ|f(y)|dy≤C∑|β|=m||DβA||BMO||f||Bδp. |
For III3, by Holder's inequality, similar to the estimates of III1, we get
|III3|≤C∑|β|=m∞∑k=0∫2k+1˜Q∖2k˜Q(|x||y|n+1−δ+|x|ε|y|n+ε−δ)|Dβ˜A(y)||f(y)|dy≤C∑|β|=m∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)(|2k˜Q|−1∫2k˜Q|DβA(y)−(DβA)˜Q|p′dy)1/p′||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO∞∑k=1(2−k+2−εk)(2kr)−n(1/p−δ/n)||fχ2k˜Q||Lp≤C∑|β|=m||DβA||BMO||f||Bδp. |
Thus
III≤C∑|β|=m||DβA||BMO||f||Bδp, |
which together with the estimates for I and II yields the desired result. This finishes the proof of Theorem 1.
Proof of Theorem 2. Let f∈H˙Kp(Rn), by Lemma 1, f=∑∞j=−∞λjaj, where a′js are the central (n(1−1/p),p)-atom with suppaj⊂Bj=B(0,2j) and ||f||H˙Kp≈∑j|λj|. We write
||˜TAδ(f)||˙Kαq=∞∑k=−∞2kn(1−1/p)||χk˜TAδ(f)||Lq≤∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|||χk˜TAδ(aj)||Lq+∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||χk˜TAδ(aj)||Lq=J+JJ. |
For JJ, by the (Lp,Lq)-boundedness of ˜TAδ for 1/q=1/p−δ/n, we get
JJ≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|||aj||Lp≤C∞∑k=−∞2kn(1−1/p)∞∑j=k|λj|2jn(1/p−1)≤C∞∑j=−∞|λj|j∑k=−∞2(k−j)n(1−1/p)≤C∞∑j=−∞|λj|≤C||f||H˙Kp. |
To obtain the estimate of J, we denote that ˜A(x)=A(x)−∑|β|=m1β!(DβA)2Bjxβ. Then Qm(A;x,y)=Qm(˜A;x,y) and Qm+1(A;x,y)=Rm(A;x,y)−∑|β|=m1β!(x−y)βDβA(x). We write, by the vanishing moment of a and for x∈Ck with k≥j+1,
˜TAδ(aj)(x)=∫RnK(x,y)Rm(A;x,y)|x−y|maj(y)dy−∑|β|=m1β!∫RnK(x,y)Dβ˜A(x)(x−y)β|x−y|maj(y)dy=∫Rn[K(x,y)|x−y|m−K(x,0)|x|m]Rm(˜A;x,y)aj(y)dy+∫RnK(x,0)|x|m[Rm(˜A;x,y)−Rm(˜A;x,0)]aj(y)dy−∑|β|=m1β!∫Rn[K(x,y)(x−y)β|x−y|m−K(x,0)xβ|x|m]Dβ˜A(x)aj(y)dy. |
Similar to the proof of Theorem 1, we obtain
|˜TAδ(aj)(x)|≤C∫Rn[|y||x|m+n+1−δ+|y|ε|x|m+n+ε−δ]|Rm(˜A;x,y)||aj(y)|dy+C∑|β|=m∫Rn[|y||x|n+1−δ+|y|ε|x|n+ε−δ]|Dβ˜A(x)||aj(y)|dy≤C∑|β|=m||DβA||BMO[2j2k(n+1−δ)+2jε2k(n+ε−δ)]+C∑|β|=m[2j2k(n+1−δ)+2jε2k(n+ε−δ)]|Dβ˜A(x)|, |
thus
J≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]2kn/q+C∑|β|=m∞∑k=−∞2kn(1−1/p)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)](∫Bk|Dβ˜A(x)|qdx)1/q≤C∑|β|=m||DβA||BMO∞∑k=−∞2kn(1−δ/n)k−1∑j=−∞|λj|[2j2k(n+1−δ)+2jε2k(n+ε−δ)]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|∞∑k=j+1[2j−k+2(j−k)ε]≤C∑|β|=m||DβA||BMO∞∑j=−∞|λj|≤C∑|β|=m||DβA||BMO||f||H˙Kp. |
This completes the proof of Theorem 2.
Proof of Theorem 3. For any cube Q=Q(0,r) with r>1, let f∈Bδp and ˜A(x)=A(x)−∑|β|=m1β!(DβA)˜Qxβ. We write, for f=fχ4Q+fχ(4Q)c=f1+f2 and z∈3Q∖2Q,
˜TAδ(f)(x)=˜TAδ(f1)(x)+∫RnRm(˜A;x,y)|x−y|mK(x,y)f2(y)dy−∑|β|=m1β!(DβA(x)−(DβA)Q)(Tδ,β(f2)(x)−Tδ,β(f2)(z))−∑|β|=m1β!(DβA(x)−(DβA)Q)Tδ,β(f2)(z)=I1(x)+I2(x)+I3(x,z)+I4(x,z), |
where Tδ,β is the singular integral operator with the kernel (x−y)β|x−y|mK(x,y) for |β|=m. Note that (I4(⋅,z))Q=0, we have
˜TAδ(f)(x)−(˜TAδ(f))Q=I1(x)−(I1(⋅))Q+I2(x)−I2(z)−[I2(⋅)−I2(z)]Q−I3(x,z)+(I3(x,z))Q−I4(x,z). |
By the (Lp,Lq)-bounded of ˜TAδ, we get
1|Q|∫Q|I1(x)|dx≤(1|Q|∫Q|˜TAδ(f1)(x)|qdx)1/q≤C|Q|−1/q||f1||Lp≤C||f||Bδp. |
Similar to the proof of Theorem 1, we obtain
|I2(x)−I2(z)|≤C||f||Bδp |
and
1|Q|∫Q|I3(x,z)|dx≤C||f||Bδp. |
Then integrating in x on Q and using the above estimates, we obtain the equivalence of the estimate
1|Q|∫Q|˜TAδ(f)(x)−(˜TAδ(f))Q|dx≤C||f||Bδp |
and the estimate
1|Q|∫Q|I4(x,z)|dx≤C||f||Bδp. |
This completes the proof of Theorem 3.
In this section we shall apply the theorems of the paper to some particular operators such as the Calderón-Zygmund singular integral operator and fractional integral operator.
Application 1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by (see [10,11,15])
T(f)(x)=∫RnK(x,y)f(y)dy, |
the multilinear operator related to T is defined by
TA(f)(x)=∫RnRm+1(A;x,y)|x−y|mK(x,y)f(y)dy. |
Then it is easily to see that T satisfies the conditions in Theorems 1–3, thus the conclusions of Theorems 1–3 hold for TA.
Application 2. Fractional integral operator with rough kernel.
For 0<δ<n, let Tδ be the fractional integral operator with rough kernel defined by (see [2,7])
Tδf(x)=∫RnΩ(x−y)|x−y|n−δf(y)dy, |
the multilinear operator related to Tδ is defined by
TAδf(x)=∫RnRm+1(A;x,y)|x−y|m+n−δΩ(x−y)f(y)dy, |
where Ω is homogeneous of degree zero on Rn, ∫Sn−1Ω(x′)dσ(x′)=0 and Ω∈Lipε(Sn−1) for some 0<ε≤1, that is there exists a constant M>0 such that for any x,y∈Sn−1, |Ω(x)−Ω(y)|≤M|x−y|ε. Then Tδ satisfies the conditions in Theorem 1. In fact, for suppf⊂(2Q)c and x∈Q=Q(x0,d), by the condition of Ω, we have (see [16])
|Ω(x−y)|x−y|n−δ−Ω(x0−y)|x0−y|n−δ|≤C(|x−x0|ε|x0−y|n+ε−δ+|x−x0||x0−y|n+1−δ), |
thus, the conclusions of Theorems 1–3 hold for TAδ.
The author would like to express his deep gratitude to the referee for his/her valuable comments and suggestions. This research was supported by the National Natural Science Foundation of China (Grant No. 11901126), the Scientific Research Funds of Hunan Provincial Education Department. (Grant No. 19B509).
The authors declare that they have no competing interests.
[1] | M. Basan, S. Hui, H. Okano, Z. Zhang, Y. Shen, J. R. Williamson and T. Hwa, Overflow metabolism in Escherichia coli results from e_cient proteome allocation, Nature, 528 (2015) 99–104. |
[2] | M. Bekker, S. de Vries, A. Ter Beek, K. J. Hellingwerf and M. J. T. de Mattos, Respiration of Escherichia coli Can Be Fully Uncoupled via the Nonelectrogenic Terminal Cytochrome bd-II Oxidase, J. Bacteriol., 191 (2009), 5510–5517. |
[3] | Q. K. Beg, A. Vazquez, J. Ernst, M. A. de Menezes, Z. Bar-Joseph, A. L. Barabasi, and Z. N. Oltvai Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity, Proc. Natl. Acad. Sci. U S A, 104 (2007), 12663–12668. |
[4] | K. J. Begg and W. D. Donachie, Cell shape and division in Escherichia coli: experiments with shape and division mutants, J. Bacteriol., 163 (1985), 615–622. |
[5] | E. M. Corteselli, J. C. Burtis, A. K. Heinz and J. B. Yavitt, Leaf Litter Fuels Methanogenesis Throughout Decomposition in a Forested Peatland, Ecosystems, 20 (2017), 1217–1232. |
[6] | J. P. DeLong, J. G. Okie, M. E. Moses, R. M. Sibly and J. H. Brown, Shifts in metabolic scaling, production, and e_ciency across major evolutionary transitions of life, Proc. Natl. Acad. Sci. U.S.A, 107 (2010), 12941–12945. |
[7] | R. H. de Deken, The Crabtree E_ect: A Regulatory System in Yeast, Microbiology, 44 (1966), 149–156. |
[8] | C. E. Deutch and G. S. Perera, Myceloid cell formation in Arthrobacter globiformis during osmotic stress, J. Appl. Bacteriol., 72 (1992), 493–499. |
[9] | A. Esteve-Nunez, M. Rothermich, M. Sharma and D. Lovley, Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture, Environ. Microbiol., 7 (2005), 641–648. |
[10] | I. Famili, J. Forster, J. Nielson and B. O. Palsson, Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network, Proc. Natl. Acad. Sci. U.S.A, 100 (2003), 13134–13139. |
[11] | A. Flamholz, E. Noor, A. Bar-Even,W. Liebermeister and R. Milo, Tradeo_s in glycolytic strategy, Proc. Natl. Acad. Sci. U.S.A, 110 (2013), 10039–10044. |
[12] | A. Frenkel and W. Hirsch, Spontaneous development of L forms of streptococci requiring secretions of other bacteria or sulphydryl compounds for normal growth, Nature, 191 (1961), 728–730. |
[13] | T. Frick and S. Schuster, An example of the prisoner's dilemma in biochemistry, Naturwis-senschaften, 90 (2003), 327–331. |
[14] | J. J. Germida and L. E. Casida Jr, Myceloid growth of Arthrobacter globiformis and other Arthrobacter species, J. Bacteriol., 144 (1980), 1152–1158. |
[15] | G. Jayachandran, H. Gorisch and L. Adrian, Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1, Arch. Microbiol., 182 (2004), 498–504. |
[16] | I. Kareva, Prisoner's dilemma in cancer metabolism, PLoS One, 6 (2011), e28576. |
[17] | C. P. Kempes, P. M. van Bodegom, D. Wolpert, E. Libby, J. Amend, and T. Hoehler, Drivers of Bacterial Maintenance and Minimal Energy Requirements, Front. Microbiol., 8 (2017), 31. |
[18] | R. Lange and R. Hengge-Aronis, Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S, J. Bacteriol., 173 (1991), 4474–4481. |
[19] | R. E. Lenski and M. Travisano, Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations, Proc. Natl. Acad. Sci. U.S.A, 91 (1994), 6808–6814. |
[20] | S. Y. Lunt and M. G. Vander Heiden, Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation, Annu. Rev. Cell Dev. Biol., 27 (2011), 441–464. |
[21] | M. J. McInerney and M. P. Bryant, Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on Acetate Degradation, Appl. Environ. Microbiol., 41 (1981), 346–354. |
[22] | D. Molenaar, R. van Berlo, D. de Ridder and B. Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, Mol. Syst. Biol., 5 (2009), 323. |
[23] | P. M¨oller, X. Liu, S. Schuster and D. Boley, Linear programming model can explain respiration of fermentation products, PLoS ONE 13 (2018), e0191803. |
[24] | N. Nanninga, Growth and form in microorganisms: morphogenesis of Escherichia coli, Can. J. Microbiol., 34 (1988), 381–389. |
[25] | E. A. Newsholme, B. Crabtree and M. S. Ardawi The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells, Biosc. Rep., 5 (1985), 393–400. |
[26] | T. Pfei_er, S. Schuster and S. Bonhoe_er, Cooperation and competition in the evolution of ATPproducing pathways, Science, 292 (2001), 504–507. |
[27] | L. Pine and C. J. Boone, Comparative cell wall analyses of morphological forms within the genus Actinomyces, J. Bacteriol., 94 (1967), 875–883. |
[28] | N. D. Price, J. L. Reed and B. O. Palsson, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nat. Rev. Microbiol., 2 (2004), 886–897. |
[29] | C. Risso, J. Sun, K. Zhuang, R. Mahadevan, R. DeBoy, W. Ismail, S. Shrivastava, H. Huot, S. Kothari, S. Daugherty, O. Bui, C. H. Schilling, D. R. Lovley and B. A. Methe, Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens, BMC Genomics, 10 (2009), 447. |
[30] | D. H. Rothman, G. P. Fournier, K. L. French, E. J. Alm, E. A. Boyle, C. Cao and R. E. Summons, Methanogenic burst in the end-Permian carbon cycle, Proc. Natl. Acad. Sci. U.S.A, 111 (2014), 5462–5467. |
[31] | K. L. Ruoff, Nutritionally variant streptococci, Clin. Microbiol. Rev., 4 (1991), 184–190. |
[32] | E. Ruppin, J. A. Papin, L. F. de Figueiredo and S. Schuster, Metabolic reconstruction, constraintbased analysis and game theory to probe genome-scale metabolic networks, Curr. Opin. Biotech., 21 (2010), 502–510. |
[33] | M. Schaechter, O. Maaloe and N. O. Kjeldgaard, Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium, J. Gen. Microbiol., 19 (1958), 592–606. |
[34] | S. Schuster, D. Boley, P. Moller, H. Stark and C. Kaleta, Mathematical models for explaining the Warburg e_ect: a review focussed on ATP and biomass production, Biochem. Soc. Trans., 43 (2015), 1187–1194. |
[35] | T. E. Shehata and A. G Marr, E_ect of Nutrient Concentration on the Growth of Escherichia coli, J. Bacteriol., 107 (1971), 210–216. |
[36] | H. Shim and S. T. Yang, Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor, J. Biotechnol., 67 (1999), 99–112. |
[37] | T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect, PLoS Comput. Biol., 7 (2011), e1002018. |
[38] | R. E. Steinberger, A. R. Allen, H. G. Hansma and P. A. Holden, Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa unsaturated biofilms, Microb. Ecol., 43 (2002), 416–423. |
[39] | A. Swain and S. Chatterjee, A new formulation for determination of the competition coeffcient in multispecies interaction for Lotka-Volterra type competition models, Curr. Sci., 112 (2017), 1920–1926. |
[40] | C. P. Tseng, J. Albrecht and R. P. Gunsalus, Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli, J. Bacteriol., 178 (1996), 1094–1098. |
[41] | M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324 (2009), 1029–1033. |
[42] | A. Vazquez, J. Liu, Y. Zhou and Z. N. Oltvai Catabolic effciency of aerobic glycolysis: The Warburg effect revisited, BMC Syst. Biol., 4 (2010), 58. |
[43] | G. N. Vemuri, E. Altman, D. P. Sangurdekar, A. B. Khodursky and M. A. Eiteman, Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio, Appl. Environ. Microbiol., 72 (2006), 3653–3661. |
[44] | D. Voet and J. G. Voet, Biochemistry, 3rd edition, Wiley and Sons, Hoboken, 2004. |
[45] | O. Warburg, Origin of cancer cells, Science, 123 (1956), 309–314. |
[46] | M. Webb, The influence of magnesium on cell division. I. The growth of Clostridium welchii in complex media deficient in magnesium, J. Gen. Microbiol., 2 (1948), 275–287. |
[47] | M. Webb, E_ects of magnesium on cellular division in bacteria, Science, 118 (1953), 607–611. |
[48] | K. D. Young, The selective value of bacterial shape, Microbiol. Mol. Biol. Rev., 70 (2006), 660–703. |
[49] | K. Zhuang, G. N. Vemuri and R. Mahadevan, Economics of membrane occupancy and respirofermentation, Mol. Syst. Biol., 7 (2011), 500. |