Citation: Chunxiao Ding, Zhipeng Qiu, Huaiping Zhu. Multi-host transmission dynamics of schistosomiasis and its optimal control[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 983-1006. doi: 10.3934/mbe.2015.12.983
[1] | Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033 |
[2] | Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066 |
[3] | Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099 |
[4] | Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051 |
[5] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[6] | Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643 |
[7] | Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039 |
[8] | Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047 |
[9] | Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350 |
[10] | Xinli Hu, Wenjie Qin, Marco Tosato . Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115 |
[1] | Journal of Mathematical Biology, 68 (2014), 1553-1582. |
[2] | PloS One, 3 (2008), e2230. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002230 |
[3] | Bulletin of Mathematical Biology, 72 (2010), 1006-1028. |
[4] | Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 33-50. http://www.researchgate.net/publication/221674057_Asymptotically_autonomous_epidemic_models |
[5] | Mathematical Biosciences, 177 (2002), 271-286. |
[6] | Mathematical Biosciences, 245 (2013), 171-187. |
[7] | Emerging Infectious Diseases, 11 (2005), 1815-1821. http://wwwnc.cdc.gov/eid/article/11/12/05-0306_article |
[8] | Springer, 1975. http://cds.cern.ch/record/1611958 |
[9] | PLoS One, 3 (2008), e4058. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004058 |
[10] | Science, 326 (2009), 1362-1367, http://www.sciencemag.org/content/326/5958/1362.short |
[11] | Interscience Publishers John Wiley and Sons, Inc., New York-London, 1962. |
[12] | Journal of Theoretical Biology, 258 (2009), 418-425. http://www.sciencedirect.com/science/article/pii/S0022519308004190 |
[13] | PLoS Medicine, 5 (2008), e18. http://dx.plos.org/10.1371/journal.pmed.0050018 |
[14] | Proceedings of the National Academy of Sciences, 110 (2013), 11457-11462. http://www.pnas.org/content/110/28/11457.short |
[15] | Bulletin of Mathematical Biology, 76 (2014), 1194-1217. |
[16] | Nonlinear Analysis: Theory, Methods and Applications, 10 (1986), 1037-1052. http://www.sciencedirect.com/science/article/pii/0362546X86900878 |
[17] | Proceedings of the American Mathematical Society, 127 (1999), 447-453. |
[18] | Mathematical Biosciences, 180 (2002), 29-48. |
[19] | Mathematical Biosciences, 190 (2004), 97-112. |
[20] | "http://www.who.int/features/factfiles/schistosomiasis/en/." target="_blank">http://www.who.int/features/factfiles/schistosomiasis/en/. |
[21] | Acta Tropica, 50 (1992), 189-204. http://www.sciencedirect.com/science/article/pii/0001706X9290076A |
[22] | Parasitology International, 62 (2013), 118-126. http://www.sciencedirect.com/science/article/pii/S1383576912001341 |
[23] | Mathematical Biosciences, 205 (2007), 83-107. |
[24] | Bulletin of Mathematical Biology, 70 (2008), 1886-1905. |
[25] | Parasit Vectors, 5 (2012), 257-275. http://www.biomedcentral.com/content/pdf/1756-3305-5-275.pdf |
1. | Chunxiao Ding, Yun Sun, Yuanguo Zhu, A schistosomiasis compartment model with incubation and its optimal control, 2017, 40, 01704214, 5079, 10.1002/mma.4372 | |
2. | Chunxiao Ding, Nana Tao, Yun Sun, Yuanguo Zhu, The effect of time delays on transmission dynamics of schistosomiasis, 2016, 91, 09600779, 360, 10.1016/j.chaos.2016.06.017 | |
3. | Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, 2019, 118, 09600779, 18, 10.1016/j.chaos.2018.11.005 | |
4. | Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, 2020, 19, 1536-0040, 1438, 10.1137/19M1280259 | |
5. | M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9 | |
6. | François M. Castonguay, Susanne H. Sokolow, Giulio A. De Leo, James N. Sanchirico, Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases, 2020, 287, 0962-8452, 20200966, 10.1098/rspb.2020.0966 | |
7. | Chunxiao Ding, Yun Sun, Yuanguo Zhu, A NN-Based Hybrid Intelligent Algorithm for a Discrete Nonlinear Uncertain Optimal Control Problem, 2017, 45, 1370-4621, 457, 10.1007/s11063-016-9536-8 | |
8. | Xi-Chao Duan, I Hyo Jung, Xue-Zhi Li, Maia Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, 2020, 43, 01704214, 4239, 10.1002/mma.6190 | |
9. | Zhipeng Qiu, Xuerui Wei, Chunhua Shan, Huaiping Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, 2020, 80, 0303-6812, 809, 10.1007/s00285-019-01442-4 | |
10. | Tao Feng, Zhipeng Qiu, Yi Song, Global analysis of a vector-host epidemic model in stochastic environments, 2019, 356, 00160032, 2885, 10.1016/j.jfranklin.2019.01.033 | |
11. | Yujiang Liu, Shujing Gao, Zhenzhen Liao, Di Chen, Dynamical behavior of a stage-structured Huanglongbing model with time delays and optimal control, 2022, 156, 09600779, 111830, 10.1016/j.chaos.2022.111830 | |
12. | S. KADALEKA, S. ABELMAN, P. M. MWAMTOBE, J. M. TCHUENCHE, OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL, 2021, 29, 0218-3390, 1, 10.1142/S0218339021500017 | |
13. | Linghui Yu, Zhipeng Qiu, Ting Guo, Modeling the effect of activation of CD4$^+$ T cells on HIV dynamics, 2022, 27, 1531-3492, 4491, 10.3934/dcdsb.2021238 | |
14. | Chinwendu E. Madubueze, Z. Chazuka, I. O. Onwubuya, F. Fatmawati, C. W. Chukwu, On the mathematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host, 2022, 8, 2297-4687, 10.3389/fams.2022.1020161 | |
15. | Lei Shi, Longxing Qi, Dynamic analysis and optimal control of a class of SISP respiratory diseases, 2022, 16, 1751-3758, 64, 10.1080/17513758.2022.2027529 | |
16. | Wei Wang, Robert Bergquist, Charles H. King, Kun Yang, Joanne P. Webster, Elimination of schistosomiasis in China: Current status and future prospects, 2021, 15, 1935-2735, e0009578, 10.1371/journal.pntd.0009578 | |
17. | Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492 | |
18. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0 | |
19. | Tailei Zhang, Xiao-Qiang Zhao, A multi-host schistosomiasis model with seasonality and time-dependent delays, 2023, 28, 1531-3492, 2927, 10.3934/dcdsb.2022198 | |
20. | Xinjie Hao, Lin Hu, Linfei Nie, Stability and Global Hopf Bifurcation Analysis of a Schistosomiasis Transmission Model with Multi-Delays, 2025, 35, 0218-1274, 10.1142/S0218127425500397 | |
21. | Lele Fan, Zhipeng Qiu, Qi Deng, Ting Guo, Libin Rong, Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy, 2025, 87, 0092-8240, 10.1007/s11538-025-01442-0 | |
22. | Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608 |