Order reduction for an RNA virus evolution model

  • Received: 01 August 2014 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : Primary: 92D15; Secondary: 35Q92, 34E13.

  • A mathematical or computational model in evolutionary biologyshould necessary combine several comparatively fast processes,which actually drive natural selection and evolution, with a veryslow process of evolution. As a result, several very differenttime scales are simultaneously present in the model; this makesits analytical study an extremely difficult task. However, thesignificant difference of the time scales implies the existence ofa possibility of the model order reduction through a process oftime separation. In this paper we conduct the procedure of modelorder reduction for a reasonably simple model of RNA virusevolution reducing the original system of three integro-partialderivative equations to a single equation. Computations confirmthat there is a good fit between the results for the original andreduced models.

    Citation: Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1007-1016. doi: 10.3934/mbe.2015.12.1007

    Related Papers:

    [1] Andrei Korobeinikov, Conor Dempsey . A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences and Engineering, 2014, 11(4): 919-927. doi: 10.3934/mbe.2014.11.919
    [2] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [3] Miguel Ángel Rodríguez-Parra, Cruz Vargas-De-León, Flaviano Godinez-Jaimes, Celia Martinez-Lázaro . Bayesian estimation of parameters in viral dynamics models with antiviral effect of interferons in a cell culture. Mathematical Biosciences and Engineering, 2023, 20(6): 11033-11062. doi: 10.3934/mbe.2023488
    [4] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [5] Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1
    [6] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [7] Sukhitha W. Vidurupola, Linda J. S. Allen . Basic stochastic models for viral infection within a host. Mathematical Biosciences and Engineering, 2012, 9(4): 915-935. doi: 10.3934/mbe.2012.9.915
    [8] Zhaohui Yuan, Xingfu Zou . Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences and Engineering, 2013, 10(2): 483-498. doi: 10.3934/mbe.2013.10.483
    [9] Niclas Kruff, Sebastian Walcher . Coordinate-independent singular perturbation reduction for systems with three time scales. Mathematical Biosciences and Engineering, 2019, 16(5): 5062-5091. doi: 10.3934/mbe.2019255
    [10] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
  • A mathematical or computational model in evolutionary biologyshould necessary combine several comparatively fast processes,which actually drive natural selection and evolution, with a veryslow process of evolution. As a result, several very differenttime scales are simultaneously present in the model; this makesits analytical study an extremely difficult task. However, thesignificant difference of the time scales implies the existence ofa possibility of the model order reduction through a process oftime separation. In this paper we conduct the procedure of modelorder reduction for a reasonably simple model of RNA virusevolution reducing the original system of three integro-partialderivative equations to a single equation. Computations confirmthat there is a good fit between the results for the original andreduced models.


    [1] Applicable Analysis, 91 (2012), 1265-1277.
    [2] Applicable Analysis, 52 (1994), 143-154.
    [3] Phil. Trans. R. Soc. B, 352 (1997), 11-20.
    [4] IEEE Trans. Aut. Control, 32 (1987), 260-263.
    [5] Bull. Math. Biol., 66 (2004), 879-883.
    [6] Math. Med. Biol., 26 (2009), 225-239.
    [7] Math. Med. Biol., 26 (2009), 309-321.
    [8] Math. Biosci. Eng., 11 (2014), 919-927.
    [9] Applicable Analysis, 89 (2010), 1271-1292.
    [10] SIAM, Philadelphia, 2005.
    [11] Computational Mathematics and Mathematical Physics, 47 (2007), 629-637.
    [12] Oxford University Press, New York, 2000.
    [13] J. Theor. Biol., 168 (1994), 291-308.
    [14] J. Mol. Evol, 51 (2000), 245-255.
    [15] J. Theor. Biol., 203 (2000), 285-301.
    [16] Phys. Rev. Lett., 76 (1996), 4440-4443.
    [17] Math. Med. Biol., 30 (2013), 65-72.
    [18] SIAM, Philadelphia, 1995.
    [19] TRENDS in Immunology, 23 (2002), 194-200.
  • This article has been cited by:

    1. Anna Maria Riera-Escandell, Andrei Korobeinikov, 2019, Chapter 5, 978-3-030-25260-1, 27, 10.1007/978-3-030-25261-8_5
    2. Silvia Pagliarini, Andrei Korobeinikov, Order reduction for a model of marine bacteriophage evolution, 2017, 811, 1742-6588, 012010, 10.1088/1742-6596/811/1/012010
    3. A Numerical Method for Solving a Class of Nonlinear Second Order Fractional Volterra Integro-Differntial Type of Singularly Perturbed Problems, 2018, 6, 2227-7390, 48, 10.3390/math6040048
    4. Silvia Pagliarini, Andrei Korobeinikov, A mathematical model of marine bacteriophage evolution, 2018, 5, 2054-5703, 171661, 10.1098/rsos.171661
    5. Silvia Pagliarini, Andrei Korobeinikov, 2018, Chapter 10, 978-3-030-01152-9, 53, 10.1007/978-3-030-01153-6_10
    6. Andrei Korobeinikov, Immune response and within-host viral evolution: Immune response can accelerate evolution, 2018, 456, 00225193, 74, 10.1016/j.jtbi.2018.08.003
    7. Andrei Korobeinikov, Stefano Pedarra, 2019, Chapter 4, 978-3-030-25260-1, 19, 10.1007/978-3-030-25261-8_4
    8. Stanca M. Ciupe, Jessica M. Conway, Incorporating Intracellular Processes in Virus Dynamics Models, 2024, 12, 2076-2607, 900, 10.3390/microorganisms12050900
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2389) PDF downloads(503) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog