Loading [Contrib]/a11y/accessibility-menu.js

Global stability for the prion equation with general incidence

  • Received: 01 May 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 92D25; Secondary: 35B35, 35B40, 35Q92, 45K05.

  • We consider the so-called prion equation with the general incidence term introduced in [14], and we investigate the stability of the steady states.The method is based on the reduction technique introduced in [11].The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.

    Citation: Pierre Gabriel. Global stability for the prion equation with general incidence[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 789-801. doi: 10.3934/mbe.2015.12.789

    Related Papers:

    [1] Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i
    [2] Inom Mirzaev, David M. Bortz . A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences and Engineering, 2017, 14(4): 933-952. doi: 10.3934/mbe.2017049
    [3] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [4] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [5] Manoj Kumar Singh, Anjali., Brajesh K. Singh, Carlo Cattani . Impact of general incidence function on three-strain SEIAR model. Mathematical Biosciences and Engineering, 2023, 20(11): 19710-19731. doi: 10.3934/mbe.2023873
    [6] Paul Georgescu, Hong Zhang, Daniel Maxin . The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences and Engineering, 2016, 13(1): 101-118. doi: 10.3934/mbe.2016.13.101
    [7] Masumi Kondo, Masakazu Onitsuka . Ulam type stability for von Bertalanffy growth model with Allee effect. Mathematical Biosciences and Engineering, 2024, 21(3): 4698-4723. doi: 10.3934/mbe.2024206
    [8] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [9] Hiroshi Nishiura . Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences and Engineering, 2010, 7(4): 851-869. doi: 10.3934/mbe.2010.7.851
    [10] Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
  • We consider the so-called prion equation with the general incidence term introduced in [14], and we investigate the stability of the steady states.The method is based on the reduction technique introduced in [11].The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.


    [1] Kinetic Related Models, 6 (2013), 219-243.
    [2] Comm. Appl. Ind. Math., 1 (2010), 299-308.
    [3] J. Math. Pures Appl., 96 (2011), 334-362.
    [4] J. Biol. Dyn., 4 (2010), 28-42.
    [5] Math. Biosci., 217 (2009), 88-99.
    [6] Comm. Math. Sci., 7 (2009), 839-865.
    [7] Math. Models Methods Appl. Sci., 20 (2010), 757-783.
    [8] J. Math. Anal. Appl., 324 (2006), 98-117.
    [9] Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99-125.
    [10] Math. Comput. Modelling, 53 (2011), 1451-1456.
    [11] Commun. Math. Sci., 10 (2012), 787-820.
    [12] Appl. Math. Lett., 27 (2014), 74-78.
    [13] J. Theoret. Biol., 242 (2006), 598-606.
    [14] SIAM J. Appl. Math., 68 (2007), 154-170.
    [15] Nature, 215 (1967), 1043-1044.
    [16] Cell, 73 (1993), 1055-1058.
    [17] Commun. Math. Sci., 7 (2009), 503-510.
    [18] J. Evol. Equ., 7 (2007), 241-264.
    [19] Biophysical Chemistry, 77 (1999), 139-152.
    [20] J. Math. Pures Appl., 84 (2005), 1235-1260.
    [21] arXiv:1310.7773.
    [22] J. Differential Equations, 210 (2005), 155-177.
    [23] Science, 216 (1982), 136-144.
    [24] Dis. Cont. Dyn. Sys. Ser. B, 6 (2006), 225-235.
    [25] Nature, 437 (2005), 257-261.
    [26] J. Math. Anal. Appl., 324 (2006), 580-603.
    [27] American Mathematical Society, Providence, RI, 1995.
    [28] in Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations, 15 (2007), 387-397.
  • This article has been cited by:

    1. Étienne Bernard, Pierre Gabriel, Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate, 2017, 272, 00221236, 3455, 10.1016/j.jfa.2017.01.009
    2. Juan Calvo, Marie Doumic, Benoît Perthame, Long-Time Asymptotics for Polymerization Models, 2018, 363, 0010-3616, 111, 10.1007/s00220-018-3218-5
    3. Rajiv Kumar, Kapil Kumar Choudhary, Rajesh Kumar, Study of the solution of a semilinear evolution equation of a prion proliferation model in the presence of chaperone in a product space, 2021, 44, 0170-4214, 1942, 10.1002/mma.6894
    4. Elena Leis, Christoph Walker, Uniqueness of weak solutions to a prion equation with polymer joining, 2017, 37, 0174-4747, 10.1515/anly-2016-0034
    5. Elena Leis, Christoph Walker, Existence of global classical and weak solutions to a prion equation with polymer joining, 2017, 17, 1424-3199, 1227, 10.1007/s00028-016-0379-6
    6. Bing Wang, Fu Tan, Jia Zhu, Daijun Wei, A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes, 2021, 18, 1551-0018, 3718, 10.3934/mbe.2021187
    7. Kapil Kumar Choudhary, Rajiv Kumar, Rajesh Kumar, Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a banach space, 2022, 11, 2163-2480, 1175, 10.3934/eect.2021039
    8. José A. Can͂izo, Pierre Gabriel, Havva Yoldaş, Spectral Gap for the Growth-Fragmentation Equation via Harris's Theorem, 2021, 53, 0036-1410, 5185, 10.1137/20M1338654
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2772) PDF downloads(495) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog