Citation: Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 625-642. doi: 10.3934/mbe.2015.12.625
[1] | Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535 |
[2] | Mayra Núñez-López, Jocelyn A. Castro-Echeverría, Jorge X. Velasco-Hernández . Dynamic interaction between transmission, within-host dynamics and mosquito density. Mathematical Biosciences and Engineering, 2025, 22(6): 1364-1381. doi: 10.3934/mbe.2025051 |
[3] | Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277 |
[4] | Joan Ponce, Horst R. Thieme . Can infectious diseases eradicate host species? The effect of infection-age structure. Mathematical Biosciences and Engineering, 2023, 20(10): 18717-18760. doi: 10.3934/mbe.2023830 |
[5] | Mahmudul Bari Hridoy . An exploration of modeling approaches for capturing seasonal transmission in stochastic epidemic models. Mathematical Biosciences and Engineering, 2025, 22(2): 324-354. doi: 10.3934/mbe.2025013 |
[6] | Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215 |
[7] | Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661 |
[8] | Beryl Musundi . An immuno-epidemiological model linking between-host and within-host dynamics of cholera. Mathematical Biosciences and Engineering, 2023, 20(9): 16015-16032. doi: 10.3934/mbe.2023714 |
[9] | Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060 |
[10] | Carlos Castillo-Chavez, Baojun Song . Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361 |
[1] | Environmental health perspectives, 55 (1984), 25-36. |
[2] | Nature reviews. Microbiology, 7 (2009), 845-855. |
[3] | Nature Medicine, 1 (1995), 815-821. |
[4] | Inflammation & allergy drug targets, 6 (2007), 27-39. |
[5] | Mathematical Biosciences and Engineering, 6 (2009), 209-237. |
[6] | Journal of mathematical biology, 35 (1997), 629-656. |
[7] | Infection and Immunity, 70 (2002), 4501-4509. |
[8] | PloS one, 8 (2013), e68680. |
[9] | Sci Transl Med, 6 (2014), p265ra167. |
[10] | The American review of respiratory disease, 133 (1986), 321-340. |
[11] | Archives of internal medicine, 163 (2003), 1009-1021. |
[12] | 2004. |
[13] | Journal of the Royal Society, Interface / the Royal Society, 7 (2010), 873-885. |
[14] | The Lancet, 352 (1998), 1886-1891. |
[15] | Journal of immunology (Baltimore, Md. : 1950), 188 (2012), 3169-3178. |
[16] | Frontiers in physiology, 2012. |
[17] | PLoS computational biology, 6 (2010), e1000778, 19pp. |
[18] | Theoretical population biology, 57 (2000), 235-247. |
[19] | Annual review of immunology, 19 (2001), 93-129. |
[20] | Journal of theoretical biology, 335 (2013), 169-184. |
[21] | Journal of theoretical biology, 289 (2011), 197-205. |
[22] | Theoretical population biology, 55 (1999), 94-109. |
[23] | Immunological reviews, 216 (2007), 93-118. |
[24] | Antimicrobial agents and chemotherapy, 57 (2013), 4237-4244. |
[25] | Nature medicine, 20 (2014), 75-79. |
[26] | Infection and immunity, 77 (2009), 4631-4642. |
[27] | Journal of immunology (Baltimore, Md. : 1950), 184 (2010), 2873-2885. |
[28] | Mathematical biosciences and engineering : MBE, 3 (2006), 661-682. |
[29] | Journal of theoretical biology, 292 (2012), 44-59. |
[30] | Journal of theoretical biology, 280 (2011), 50-62. |
[31] | Journal of theoretical biology, 254 (2008), 178-196. |
[32] | Journal of theoretical biology, 227 (2004), 463-486. |
[33] | Wiley interdisciplinary reviews. Systems biology and medicine, 3 (2011), 479-489. |
[34] | SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656. |
[35] | Mathematical Biosciences, 180 (2002), 161-185. |
[36] | Journal of Theoretical Biology, 223 (2003), 391-404. |
[37] | Annual review of immunology, 31 (2013), 475-527. |
[38] | 2013. |
[39] | Int Rev Cytol, 128 (1991), 215-260. |
[40] | Science, 329 (2010), 538-541. |
[41] | Nature reviews. Immunology, 12 (2012), 352-366. |
[42] | Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 8327-8332. |
[43] | Journal of theoretical biology, 231 (2004), 357-376. |
[44] | Mathematical biosciences and engineering: MBE, 1 (2004), 81-93. |
[45] | Infection and immunity, 81 (2013), 2909-2919. |
[46] | The Journal of Immunology, 166 (2001), 1951-1967. |
[47] | The Journal of Immunology, 168 (2002), 4968-4979. |
[48] | Nature reviews. Microbiology, 6 (2008), 520-528. |
1. | Sarah B. Minucci, Rebecca L. Heise, Angela M. Reynolds, Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries, 2020, 6, 2297-4687, 10.3389/fams.2020.00036 | |
2. | Phillip P Salvatore, Alvaro Proaño, Emily A Kendall, Robert H Gilman, David W Dowdy, Linking Individual Natural History to Population Outcomes in Tuberculosis, 2018, 217, 0022-1899, 112, 10.1093/infdis/jix555 | |
3. | Denise Kirschner, Elsje Pienaar, Simeone Marino, Jennifer J. Linderman, A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment, 2017, 3, 24523100, 170, 10.1016/j.coisb.2017.05.014 | |
4. | Martí Català, Jordi Bechini, Montserrat Tenesa, Ricardo Pérez, Mariano Moya, Cristina Vilaplana, Joaquim Valls, Sergio Alonso, Daniel López, Pere-Joan Cardona, Clara Prats, Dominik Wodarz, Modelling the dynamics of tuberculosis lesions in a virtual lung: Role of the bronchial tree in endogenous reinfection, 2020, 16, 1553-7358, e1007772, 10.1371/journal.pcbi.1007772 | |
5. | Jaishree Garhyan, Bikul Das, Rakesh Bhatnagar, 2019, Chapter 17, 978-981-32-9412-7, 301, 10.1007/978-981-32-9413-4_17 | |
6. | Sudha Bhavanam, Gina R Rayat, Monika Keelan, Dennis Kunimoto, Steven J Drews, Understanding the pathophysiology of the human TB lung granuloma usingin vitrogranuloma models, 2016, 11, 1746-0913, 1073, 10.2217/fmb-2016-0005 | |
7. | G. An, B. G. Fitzpatrick, S. Christley, P. Federico, A. Kanarek, R. Miller Neilan, M. Oremland, R. Salinas, R. Laubenbacher, S. Lenhart, Optimization and Control of Agent-Based Models in Biology: A Perspective, 2017, 79, 0092-8240, 63, 10.1007/s11538-016-0225-6 | |
8. | Gustavo A. Vásquez-Montoya, Juan S. Danobeitia, Luis A. Fernández, Juan P. Hernández-Ortiz, Computational immuno-biology for organ transplantation and regenerative medicine, 2016, 30, 0955470X, 235, 10.1016/j.trre.2016.05.002 | |
9. | Stanca M. Ciupe, Jane M. Heffernan, In-host modeling, 2017, 2, 24680427, 188, 10.1016/j.idm.2017.04.002 | |
10. | Clara Prats, Cristina Vilaplana, Joaquim Valls, Elena Marzo, Pere-Joan Cardona, Daniel López, Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model, 2016, 7, 1664-302X, 10.3389/fmicb.2016.00033 | |
11. | Winston Garira, Bothwell Maregere, The transmission mechanism theory of disease dynamics: Its aims, assumptions and limitations, 2023, 8, 24680427, 122, 10.1016/j.idm.2022.12.001 | |
12. | Wenjing Zhang, Disease clearance of tuberculosis infection: An in-host continuous-time Markov chain model, 2022, 413, 00963003, 126614, 10.1016/j.amc.2021.126614 | |
13. | Wenjing Zhang, Leif Ellingson, Federico Frascoli, Jane Heffernan, An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis, 2021, 83, 0303-6812, 10.1007/s00285-021-01655-6 | |
14. | Dipanjan Chakraborty, Saikat Batabyal, Vitaly V. Ganusov, A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis, 2024, 10, 2297-4687, 10.3389/fams.2024.1355373 | |
15. | Pariksheet Nanda, Maral Budak, Christian T. Michael, Kathryn Krupinsky, Denise E. Kirschner, 2024, Chapter 2, 978-3-031-56793-3, 11, 10.1007/978-3-031-56794-0_2 | |
16. | Ying He, Bo Bi, Conditions for extinction and ergodicity of a stochastic Mycobacterium tuberculosis model with Markov switching, 2024, 9, 2473-6988, 30686, 10.3934/math.20241482 | |
17. | Fatima Rahman, Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse, 2024, 15, 1664-3224, 10.3389/fimmu.2024.1437901 |