Citation: Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 491-501. doi: 10.3934/mbe.2015.12.491
[1] | H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans . A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences and Engineering, 2012, 9(4): 699-736. doi: 10.3934/mbe.2012.9.699 |
[2] | Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241 |
[3] | J. Ignacio Tello . On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263 |
[4] | Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071 |
[5] | Heyrim Cho, Ya-Huei Kuo, Russell C. Rockne . Comparison of cell state models derived from single-cell RNA sequencing data: graph versus multi-dimensional space. Mathematical Biosciences and Engineering, 2022, 19(8): 8505-8536. doi: 10.3934/mbe.2022395 |
[6] | T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613 |
[7] | Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325 |
[8] | Azmy S. Ackleh, Jeremy J. Thibodeaux . Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences and Engineering, 2008, 5(4): 601-616. doi: 10.3934/mbe.2008.5.601 |
[9] | Jacek Banasiak, Aleksandra Falkiewicz . A singular limit for an age structured mutation problem. Mathematical Biosciences and Engineering, 2017, 14(1): 17-30. doi: 10.3934/mbe.2017002 |
[10] | Glenn Webb . The force of cell-cell adhesion in determining the outcome in a nonlocal advection diffusion model of wound healing. Mathematical Biosciences and Engineering, 2022, 19(9): 8689-8704. doi: 10.3934/mbe.2022403 |
[1] | J. Math. Biol., 49 (2004), 329-357. |
[2] | Mathematical medicine and biology, 21 (2004), 49-61. |
[3] | Ph.D thesis, University of Canterbury, New Zealand, 2007. |
[4] | Mathematical medicine and biology, 22 (2005), 371-390. |
[5] | Communications in Applied and Industrial Mathematics, 1 (2010), 299-308. |
[6] | Journal de Mathémathiques Pures et Appliquée, 96 (2011), 334-362. |
[7] | J.evol.equ., 1 (2001), 405-409. |
[8] | Jour. Math. Biol., 19 (1984), 227-248. |
[9] | J. Aust. Math. Soc. Ser. B, 30 (1989), 424-435. |
[10] | J. Math. Biol., 30 (1991), 101-123. |
[11] | Mathematical Biosciences, 72 (1984), 19-50. |
[12] | Commun. Math. Sci., 7 (2009), 503-510. |
[13] | St. Paul's London, 1798. |
[14] | Proc. Edinburgh Math. Soc., 44 (1926), 98-130. |
[15] | Lecture Notes in Biomathematics, 68. Springer-Verlag, Berlin, 1986. |
[16] | Comptes Rendus Mathematique, 338 (2004), 697-702. |
[17] | J. Math. Pures Appl., 84 (2005), 1235-1260. |
[18] | Genes Dev., 23 (2009), 2675-2699. |
[19] | Journal of Differential Equations, 210 (2005), 155-177. |
[20] | Differential and Integral Equations, 24 (2011), 787-799. |
[21] | European Journal of Applied Mathematics, 12 (2001), 625-644. |
[22] | ANZIAM J., 51 (2010), 383-393. |
1. | Ali A. Zaidi, Bruce van-Brunt, Graeme C. Wake, Probability density function solutions to a Bessel type pantograph equation, 2016, 95, 0003-6811, 2565, 10.1080/00036811.2015.1102890 | |
2. | Messoud Efendiev, Bruce Brunt, Ali A. Zaidi, Touqeer H. Shah, Asymmetric cell division with stochastic growth rate. Dedicated to the memory of the late Spartak Agamirzayev, 2018, 41, 0170-4214, 8059, 10.1002/mma.5269 | |
3. | Graeme Wake, 2015, Chapter 27, 978-3-319-22128-1, 155, 10.1007/978-3-319-22129-8_27 | |
4. | C.F. Lo, Exact solution of the functional Fokker–Planck equation for cell growth with asymmetric cell division, 2019, 533, 03784371, 122079, 10.1016/j.physa.2019.122079 | |
5. | STEPHEN TAYLOR, XUESHAN YANG, ESTIMATES FOR APPROXIMATE SOLUTIONS TO A FUNCTIONAL DIFFERENTIAL EQUATION MODEL OF CELL DIVISION, 2021, 1446-1811, 1, 10.1017/S1446181121000055 | |
6. | S. T. H. Shah, A. A. Zaidi, On the existence of solutions to an inhomogeneous pantograph type equation with singular coefficients, 2020, 6, 2296-9020, 935, 10.1007/s41808-020-00089-3 | |
7. | M. MOHSIN, A. A. ZAIDI, ON EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A PANTOGRAPH TYPE EQUATION, 2021, 1446-1811, 1, 10.1017/S144618112100002X | |
8. | Muhammad Mohsin, Syed Touqeer H. Shah, Ali A. Zaidi, Wing-Sum Cheung, On Solutions to a Class of Functional Differential Equations with Time-Dependent Coefficients, 2022, 2022, 1687-0409, 1, 10.1155/2022/5849405 | |
9. | Bertrand Cloez, Benoîte de Saporta, Tristan Roget, Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process, 2021, 83, 0303-6812, 10.1007/s00285-021-01695-y | |
10. | A. A. ZAIDI, B. VAN BRUNT, ASYMMETRICAL CELL DIVISION WITH EXPONENTIAL GROWTH, 2021, 63, 1446-1811, 70, 10.1017/S1446181121000109 | |
11. | G. Derfel, B. van Brunt, On the balanced pantograph equation of mixed type, 2024, 75, 1027-3190, 1627, 10.3842/umzh.v75i12.7654 | |
12. | G. Derfel, B. van Brunt, On the Balanced Pantograph Equation of Mixed Type, 2024, 0041-5995, 10.1007/s11253-024-02295-x | |
13. | Bruce van Brunt, Gregory Derfel, Ali Ashher Zaidi, On the advanced balanced pantograph equation, 2025, 0, 1534-0392, 0, 10.3934/cpaa.2025064 |