A model for asymmetrical cell division

  • Received: 01 August 2014 Accepted: 29 June 2018 Published: 01 January 2015
  • MSC : Primary: 34K08, 35L02, 34L10; Secondary: 92C37.

  • We present a model that describes the growth, division and death of a cell population structured by size. The model is an extension of that studied by Hall and Wake (1989) and incorporates the asymmetric division of cells. We consider the case of binary asymmetrical splitting in which a cell of size $\xi$ divides into two daughter cells of different sizes and find the steady size distribution (SSD) solution to the non-local differential equation. We then discuss the shape of the SSD solution. The existence of higher eigenfunctions is also discussed.

    Citation: Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 491-501. doi: 10.3934/mbe.2015.12.491

    Related Papers:

    [1] H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans . A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences and Engineering, 2012, 9(4): 699-736. doi: 10.3934/mbe.2012.9.699
    [2] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [3] J. Ignacio Tello . On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263
    [4] Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071
    [5] Heyrim Cho, Ya-Huei Kuo, Russell C. Rockne . Comparison of cell state models derived from single-cell RNA sequencing data: graph versus multi-dimensional space. Mathematical Biosciences and Engineering, 2022, 19(8): 8505-8536. doi: 10.3934/mbe.2022395
    [6] T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613
    [7] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [8] Azmy S. Ackleh, Jeremy J. Thibodeaux . Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences and Engineering, 2008, 5(4): 601-616. doi: 10.3934/mbe.2008.5.601
    [9] Jacek Banasiak, Aleksandra Falkiewicz . A singular limit for an age structured mutation problem. Mathematical Biosciences and Engineering, 2017, 14(1): 17-30. doi: 10.3934/mbe.2017002
    [10] Glenn Webb . The force of cell-cell adhesion in determining the outcome in a nonlocal advection diffusion model of wound healing. Mathematical Biosciences and Engineering, 2022, 19(9): 8689-8704. doi: 10.3934/mbe.2022403
  • We present a model that describes the growth, division and death of a cell population structured by size. The model is an extension of that studied by Hall and Wake (1989) and incorporates the asymmetric division of cells. We consider the case of binary asymmetrical splitting in which a cell of size $\xi$ divides into two daughter cells of different sizes and find the steady size distribution (SSD) solution to the non-local differential equation. We then discuss the shape of the SSD solution. The existence of higher eigenfunctions is also discussed.


    [1] J. Math. Biol., 49 (2004), 329-357.
    [2] Mathematical medicine and biology, 21 (2004), 49-61.
    [3] Ph.D thesis, University of Canterbury, New Zealand, 2007.
    [4] Mathematical medicine and biology, 22 (2005), 371-390.
    [5] Communications in Applied and Industrial Mathematics, 1 (2010), 299-308.
    [6] Journal de Mathémathiques Pures et Appliquée, 96 (2011), 334-362.
    [7] J.evol.equ., 1 (2001), 405-409.
    [8] Jour. Math. Biol., 19 (1984), 227-248.
    [9] J. Aust. Math. Soc. Ser. B, 30 (1989), 424-435.
    [10] J. Math. Biol., 30 (1991), 101-123.
    [11] Mathematical Biosciences, 72 (1984), 19-50.
    [12] Commun. Math. Sci., 7 (2009), 503-510.
    [13] St. Paul's London, 1798.
    [14] Proc. Edinburgh Math. Soc., 44 (1926), 98-130.
    [15] Lecture Notes in Biomathematics, 68. Springer-Verlag, Berlin, 1986.
    [16] Comptes Rendus Mathematique, 338 (2004), 697-702.
    [17] J. Math. Pures Appl., 84 (2005), 1235-1260.
    [18] Genes Dev., 23 (2009), 2675-2699.
    [19] Journal of Differential Equations, 210 (2005), 155-177.
    [20] Differential and Integral Equations, 24 (2011), 787-799.
    [21] European Journal of Applied Mathematics, 12 (2001), 625-644.
    [22] ANZIAM J., 51 (2010), 383-393.
  • This article has been cited by:

    1. Ali A. Zaidi, Bruce van-Brunt, Graeme C. Wake, Probability density function solutions to a Bessel type pantograph equation, 2016, 95, 0003-6811, 2565, 10.1080/00036811.2015.1102890
    2. Messoud Efendiev, Bruce Brunt, Ali A. Zaidi, Touqeer H. Shah, Asymmetric cell division with stochastic growth rate. Dedicated to the memory of the late Spartak Agamirzayev, 2018, 41, 0170-4214, 8059, 10.1002/mma.5269
    3. Graeme Wake, 2015, Chapter 27, 978-3-319-22128-1, 155, 10.1007/978-3-319-22129-8_27
    4. C.F. Lo, Exact solution of the functional Fokker–Planck equation for cell growth with asymmetric cell division, 2019, 533, 03784371, 122079, 10.1016/j.physa.2019.122079
    5. STEPHEN TAYLOR, XUESHAN YANG, ESTIMATES FOR APPROXIMATE SOLUTIONS TO A FUNCTIONAL DIFFERENTIAL EQUATION MODEL OF CELL DIVISION, 2021, 1446-1811, 1, 10.1017/S1446181121000055
    6. S. T. H. Shah, A. A. Zaidi, On the existence of solutions to an inhomogeneous pantograph type equation with singular coefficients, 2020, 6, 2296-9020, 935, 10.1007/s41808-020-00089-3
    7. M. MOHSIN, A. A. ZAIDI, ON EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A PANTOGRAPH TYPE EQUATION, 2021, 1446-1811, 1, 10.1017/S144618112100002X
    8. Muhammad Mohsin, Syed Touqeer H. Shah, Ali A. Zaidi, Wing-Sum Cheung, On Solutions to a Class of Functional Differential Equations with Time-Dependent Coefficients, 2022, 2022, 1687-0409, 1, 10.1155/2022/5849405
    9. Bertrand Cloez, Benoîte de Saporta, Tristan Roget, Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process, 2021, 83, 0303-6812, 10.1007/s00285-021-01695-y
    10. A. A. ZAIDI, B. VAN BRUNT, ASYMMETRICAL CELL DIVISION WITH EXPONENTIAL GROWTH, 2021, 63, 1446-1811, 70, 10.1017/S1446181121000109
    11. G. Derfel, B. van Brunt, On the balanced pantograph equation of mixed type, 2024, 75, 1027-3190, 1627, 10.3842/umzh.v75i12.7654
    12. G. Derfel, B. van Brunt, On the Balanced Pantograph Equation of Mixed Type, 2024, 0041-5995, 10.1007/s11253-024-02295-x
    13. Bruce van Brunt, Gregory Derfel, Ali Ashher Zaidi, On the advanced balanced pantograph equation, 2025, 0, 1534-0392, 0, 10.3934/cpaa.2025064
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3064) PDF downloads(507) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog