A data-motivated density-dependent diffusion model of in vitro glioblastoma growth

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 92C50, 35C07; Secondary: 35K57.

  • Glioblastoma multiforme is an aggressive brain cancer that is extremely fatal. It is characterized by both proliferation and large amounts of migration, which contributes to the difficulty of treatment. Previous models of this type of cancer growth often include two separate equations to model proliferation or migration. We propose a single equation which uses density-dependent diffusion to capture the behavior of both proliferation and migration. We analyze the model to determine the existence of traveling wave solutions. To prove the viability of the density-dependent diffusion function chosen, we compare our model with well-known in vitro experimental data.

    Citation: Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157

    Related Papers:

    [1] Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371
    [2] Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
    [3] Lifeng Han, Steffen Eikenberry, Changhan He, Lauren Johnson, Mark C. Preul, Eric J. Kostelich, Yang Kuang . Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates. Mathematical Biosciences and Engineering, 2019, 16(5): 5307-5323. doi: 10.3934/mbe.2019265
    [4] Leibo Wang, Xuebin Zhang, Jun Liu, Qingjun Liu . RETRACTED ARTICLE: Kinesin family member 15 can promote the proliferation of glioblastoma. Mathematical Biosciences and Engineering, 2022, 19(8): 8259-8272. doi: 10.3934/mbe.2022384
    [5] Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang . Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences and Engineering, 2017, 14(2): 407-420. doi: 10.3934/mbe.2017025
    [6] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
    [7] Alexandra Shyntar, Thomas Hillen . Mathematical modeling of microtube-driven regrowth of gliomas after local resection. Mathematical Biosciences and Engineering, 2025, 22(1): 52-72. doi: 10.3934/mbe.2025003
    [8] Yangjin Kim, Hans G. Othmer . Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141
    [9] Duane C. Harris, Giancarlo Mignucci-Jiménez, Yuan Xu, Steffen E. Eikenberry, C. Chad Quarles, Mark C. Preul, Yang Kuang, Eric J. Kostelich . Tracking glioblastoma progression after initial resection with minimal reaction-diffusion models. Mathematical Biosciences and Engineering, 2022, 19(6): 5446-5481. doi: 10.3934/mbe.2022256
    [10] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
  • Glioblastoma multiforme is an aggressive brain cancer that is extremely fatal. It is characterized by both proliferation and large amounts of migration, which contributes to the difficulty of treatment. Previous models of this type of cancer growth often include two separate equations to model proliferation or migration. We propose a single equation which uses density-dependent diffusion to capture the behavior of both proliferation and migration. We analyze the model to determine the existence of traveling wave solutions. To prove the viability of the density-dependent diffusion function chosen, we compare our model with well-known in vitro experimental data.


    [1] J. Theor. Biol., 243 (2006), 98-113.
    [2] SIAM J. Math. Anal., 12 (1981), 880-892.
    [3] Physics in Medicine and Biology, 53 (2008), p879.
    [4] J. Theor. Biol., 245 (2007), 576-594.
    [5] 2nd edition, Springer, 2006.
    [6] http://www.mathworks.com/matlabcentral/fileexchange/7173-grabit, (2005), Retrieved July 1, 2014.
    [7] J. Phys. A-Math. Gen., 38 (2005), 3367-3379.
    [8] Math. Biosci. Eng., 12 (2015), 41-69.
    [9] J. Phys. A-Math. Gen., 37 (2004), 6267-6268.
    [10] Magnetic Resonance in Medicine, 54 (2005), 616-624.
    [11] Eur. Phys. J. Plus, 128 (2013), p136.
    [12] SIAM J. Optimiz., 9 (1999), 112-147.
    [13] Discrete Cont. Dyn.-B, 6 (2006), 1175-1189.
    [14] Math. Nachr., 242 (2002), 148-164.
    [15] Commun. Pur. Appl. Anal., 9 (2010), 1083-1098.
    [16] Abstr. Appl. Anal., 2011 (2011), 1-22.
    [17] Math. Biosci. Eng., 12 (2015), 879-905.
    [18] 3rd edition, Springer, 2002.
    [19] Phys. Rev. E, 85 (2012), 066120.
    [20] Neurologist, 12 (2006), 279-292.
    [21] J. Theor. Biol., 323 (2013), 25-39.
    [22] J. Math. Biol., 50 (2005), 683-698.
    [23] Phys. Rev. E, 84 (2011), 021921.
    [24] J. Differ. Equations, 117 (1995), 281-319.
    [25] Discrete Cont. Dyn.-B, 138 (2010), 455-487.
    [26] SIAM J. Sci. Stat. Comp., 11 (1990), 1-32.
    [27] Biophy. J., 92 (2007), 356-365.
    [28] in Mathematical Modeling of Biological Systems (eds. A. Deutsch, L. Brusch, H. Byrne, G. Vries and H. Herzel), vol. I of Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2007, 217-224.
    [29] J. Neurol. Sci., 216 (2003), 1-10.
    [30] Cell Proliferat., 28 (1995), 17-31.
    [31] J. Math. Biol., 33 (1994), 1-16.
  • This article has been cited by:

    1. Lingeshwaran Shangerganesh, Govindharaju Sathishkumar, Shanmugasundaram Karthikeyan, Lower bounds for the finite-time blow-up of solutions of a cancer invasion model, 2019, 14173875, 1, 10.14232/ejqtde.2019.1.12
    2. L. Shangerganesh, N. Nyamoradi, V.N. Deiva Mani, S. Karthikeyan, On the existence of weak solutions of nonlinear degenerate parabolic system with variable exponents, 2018, 75, 08981221, 322, 10.1016/j.camwa.2017.09.019
    3. Tracy L. Stepien, Erica M. Rutter, Yang Kuang, Traveling Waves of a Go-or-Grow Model of Glioma Growth, 2018, 78, 0036-1399, 1778, 10.1137/17M1146257
    4. Erica M. Rutter, Tracy L. Stepien, Barrett J. Anderies, Jonathan D. Plasencia, Eric C. Woolf, Adrienne C. Scheck, Gregory H. Turner, Qingwei Liu, David Frakes, Vikram Kodibagkar, Yang Kuang, Mark C. Preul, Eric J. Kostelich, Mathematical Analysis of Glioma Growth in a Murine Model, 2017, 7, 2045-2322, 10.1038/s41598-017-02462-0
    5. Mohamed M. El-Dessoky, Ebraheem O. Alzahrani, Asim M. Asiri, Meng Fan, Zijuan Wen, Yang Kuang, Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model, 2016, 13, 1551-0018, 3, 10.3934/mbe.2017025
    6. Ramray Bhat, Tilmann Glimm, Marta Linde-Medina, Cheng Cui, Stuart A. Newman, Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton, 2019, 156, 09254773, 41, 10.1016/j.mod.2019.03.001
    7. John T. Nardini, D. M. Bortz, Investigation of a Structured Fisher's Equation with Applications in Biochemistry, 2018, 78, 0036-1399, 1712, 10.1137/16M1108546
    8. John H. Lagergren, John T. Nardini, G. Michael Lavigne, Erica M. Rutter, Kevin B. Flores, Learning partial differential equations for biological transport models from noisy spatio-temporal data, 2020, 476, 1364-5021, 20190800, 10.1098/rspa.2019.0800
    9. E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6
    10. Jeyaraj Manimaran, Lingeshwaran Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, 2020, 2, 2577-7408, 10.1002/cmm4.1068
    11. Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, A Predictive Reaction-Diffusion Based Model of E.coliColony Growth Control, 2021, 5, 2475-1456, 1952, 10.1109/LCSYS.2020.3046612
    12. Sashikumaar Ganesan, Shangerganesh Lingeshwaran, A biophysical model of tumor invasion, 2017, 46, 10075704, 135, 10.1016/j.cnsns.2016.10.013
    13. Victor Lopez de Rioja, Neus Isern, Joaquim Fort, A mathematical approach to virus therapy of glioblastomas, 2016, 11, 1745-6150, 10.1186/s13062-015-0100-7
    14. Aisha Tursynkozha, Ardak Kashkynbayev, Bibinur Shupeyeva, Erica M. Rutter, Yang Kuang, Traveling wave speed and profile of a “go or grow” glioblastoma multiforme model, 2023, 118, 10075704, 107008, 10.1016/j.cnsns.2022.107008
    15. Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, 2021, A Predictive Reaction-diffusion Based Model of E. coli Colony Growth Control, 978-1-6654-4197-1, 1891, 10.23919/ACC50511.2021.9482641
    16. Chuying Ding, Zizi Wang, Qian Zhang, Age-structure model for oncolytic virotherapy, 2022, 15, 1793-5245, 10.1142/S1793524521500911
    17. Zizi Wang, Qian Zhang, Yong Luo, A general non-local delay model on oncolytic virus therapy, 2022, 102, 0307904X, 423, 10.1016/j.apm.2021.09.045
    18. Kyle Nguyen, Erica M. Rutter, Kevin B. Flores, Estimation of Parameter Distributions for Reaction-Diffusion Equations with Competition using Aggregate Spatiotemporal Data, 2023, 85, 0092-8240, 10.1007/s11538-023-01162-3
    19. Mykola Yaremenko, Aspects of Solvability Theory for Quasilinear Parabolic Systems in Specific Form with the Singular Coefficients, 2023, 3, 2732-9941, 8, 10.37394/232020.2023.3.2
    20. V.S. Aswin, J. Manimaran, Nagaiah Chamakuri, Space-time adaptivity for a multi-scale cancer invasion model, 2023, 146, 08981221, 309, 10.1016/j.camwa.2023.07.005
    21. Adam A. Malik, Kyle C. Nguyen, John T. Nardini, Cecilia C. Krona, Kevin B. Flores, Sven Nelander, Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity, 2025, 11, 2056-7189, 10.1038/s41540-025-00492-3
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2682) PDF downloads(589) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog