Citation: Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157
[1] | Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371 |
[2] | Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41 |
[3] | Lifeng Han, Steffen Eikenberry, Changhan He, Lauren Johnson, Mark C. Preul, Eric J. Kostelich, Yang Kuang . Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates. Mathematical Biosciences and Engineering, 2019, 16(5): 5307-5323. doi: 10.3934/mbe.2019265 |
[4] | Leibo Wang, Xuebin Zhang, Jun Liu, Qingjun Liu . RETRACTED ARTICLE: Kinesin family member 15 can promote the proliferation of glioblastoma. Mathematical Biosciences and Engineering, 2022, 19(8): 8259-8272. doi: 10.3934/mbe.2022384 |
[5] | Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang . Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences and Engineering, 2017, 14(2): 407-420. doi: 10.3934/mbe.2017025 |
[6] | Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005 |
[7] | Alexandra Shyntar, Thomas Hillen . Mathematical modeling of microtube-driven regrowth of gliomas after local resection. Mathematical Biosciences and Engineering, 2025, 22(1): 52-72. doi: 10.3934/mbe.2025003 |
[8] | Yangjin Kim, Hans G. Othmer . Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141 |
[9] | Duane C. Harris, Giancarlo Mignucci-Jiménez, Yuan Xu, Steffen E. Eikenberry, C. Chad Quarles, Mark C. Preul, Yang Kuang, Eric J. Kostelich . Tracking glioblastoma progression after initial resection with minimal reaction-diffusion models. Mathematical Biosciences and Engineering, 2022, 19(6): 5446-5481. doi: 10.3934/mbe.2022256 |
[10] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[1] | J. Theor. Biol., 243 (2006), 98-113. |
[2] | SIAM J. Math. Anal., 12 (1981), 880-892. |
[3] | Physics in Medicine and Biology, 53 (2008), p879. |
[4] | J. Theor. Biol., 245 (2007), 576-594. |
[5] | 2nd edition, Springer, 2006. |
[6] | http://www.mathworks.com/matlabcentral/fileexchange/7173-grabit, (2005), Retrieved July 1, 2014. |
[7] | J. Phys. A-Math. Gen., 38 (2005), 3367-3379. |
[8] | Math. Biosci. Eng., 12 (2015), 41-69. |
[9] | J. Phys. A-Math. Gen., 37 (2004), 6267-6268. |
[10] | Magnetic Resonance in Medicine, 54 (2005), 616-624. |
[11] | Eur. Phys. J. Plus, 128 (2013), p136. |
[12] | SIAM J. Optimiz., 9 (1999), 112-147. |
[13] | Discrete Cont. Dyn.-B, 6 (2006), 1175-1189. |
[14] | Math. Nachr., 242 (2002), 148-164. |
[15] | Commun. Pur. Appl. Anal., 9 (2010), 1083-1098. |
[16] | Abstr. Appl. Anal., 2011 (2011), 1-22. |
[17] | Math. Biosci. Eng., 12 (2015), 879-905. |
[18] | 3rd edition, Springer, 2002. |
[19] | Phys. Rev. E, 85 (2012), 066120. |
[20] | Neurologist, 12 (2006), 279-292. |
[21] | J. Theor. Biol., 323 (2013), 25-39. |
[22] | J. Math. Biol., 50 (2005), 683-698. |
[23] | Phys. Rev. E, 84 (2011), 021921. |
[24] | J. Differ. Equations, 117 (1995), 281-319. |
[25] | Discrete Cont. Dyn.-B, 138 (2010), 455-487. |
[26] | SIAM J. Sci. Stat. Comp., 11 (1990), 1-32. |
[27] | Biophy. J., 92 (2007), 356-365. |
[28] | in Mathematical Modeling of Biological Systems (eds. A. Deutsch, L. Brusch, H. Byrne, G. Vries and H. Herzel), vol. I of Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2007, 217-224. |
[29] | J. Neurol. Sci., 216 (2003), 1-10. |
[30] | Cell Proliferat., 28 (1995), 17-31. |
[31] | J. Math. Biol., 33 (1994), 1-16. |
1. | Lingeshwaran Shangerganesh, Govindharaju Sathishkumar, Shanmugasundaram Karthikeyan, Lower bounds for the finite-time blow-up of solutions of a cancer invasion model, 2019, 14173875, 1, 10.14232/ejqtde.2019.1.12 | |
2. | L. Shangerganesh, N. Nyamoradi, V.N. Deiva Mani, S. Karthikeyan, On the existence of weak solutions of nonlinear degenerate parabolic system with variable exponents, 2018, 75, 08981221, 322, 10.1016/j.camwa.2017.09.019 | |
3. | Tracy L. Stepien, Erica M. Rutter, Yang Kuang, Traveling Waves of a Go-or-Grow Model of Glioma Growth, 2018, 78, 0036-1399, 1778, 10.1137/17M1146257 | |
4. | Erica M. Rutter, Tracy L. Stepien, Barrett J. Anderies, Jonathan D. Plasencia, Eric C. Woolf, Adrienne C. Scheck, Gregory H. Turner, Qingwei Liu, David Frakes, Vikram Kodibagkar, Yang Kuang, Mark C. Preul, Eric J. Kostelich, Mathematical Analysis of Glioma Growth in a Murine Model, 2017, 7, 2045-2322, 10.1038/s41598-017-02462-0 | |
5. | Mohamed M. El-Dessoky, Ebraheem O. Alzahrani, Asim M. Asiri, Meng Fan, Zijuan Wen, Yang Kuang, Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model, 2016, 13, 1551-0018, 3, 10.3934/mbe.2017025 | |
6. | Ramray Bhat, Tilmann Glimm, Marta Linde-Medina, Cheng Cui, Stuart A. Newman, Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton, 2019, 156, 09254773, 41, 10.1016/j.mod.2019.03.001 | |
7. | John T. Nardini, D. M. Bortz, Investigation of a Structured Fisher's Equation with Applications in Biochemistry, 2018, 78, 0036-1399, 1712, 10.1137/16M1108546 | |
8. | John H. Lagergren, John T. Nardini, G. Michael Lavigne, Erica M. Rutter, Kevin B. Flores, Learning partial differential equations for biological transport models from noisy spatio-temporal data, 2020, 476, 1364-5021, 20190800, 10.1098/rspa.2019.0800 | |
9. | E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, 2018, 77, 0303-6812, 1999, 10.1007/s00285-018-1238-6 | |
10. | Jeyaraj Manimaran, Lingeshwaran Shangerganesh, Solvability and numerical simulations for tumor invasion model with nonlinear diffusion, 2020, 2, 2577-7408, 10.1002/cmm4.1068 | |
11. | Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, A Predictive Reaction-Diffusion Based Model of E.coliColony Growth Control, 2021, 5, 2475-1456, 1952, 10.1109/LCSYS.2020.3046612 | |
12. | Sashikumaar Ganesan, Shangerganesh Lingeshwaran, A biophysical model of tumor invasion, 2017, 46, 10075704, 135, 10.1016/j.cnsns.2016.10.013 | |
13. | Victor Lopez de Rioja, Neus Isern, Joaquim Fort, A mathematical approach to virus therapy of glioblastomas, 2016, 11, 1745-6150, 10.1186/s13062-015-0100-7 | |
14. | Aisha Tursynkozha, Ardak Kashkynbayev, Bibinur Shupeyeva, Erica M. Rutter, Yang Kuang, Traveling wave speed and profile of a “go or grow” glioblastoma multiforme model, 2023, 118, 10075704, 107008, 10.1016/j.cnsns.2022.107008 | |
15. | Changhan He, Samat Bayakhmetov, Duane Harris, Yang Kuang, Xiao Wang, 2021, A Predictive Reaction-diffusion Based Model of E. coli Colony Growth Control, 978-1-6654-4197-1, 1891, 10.23919/ACC50511.2021.9482641 | |
16. | Chuying Ding, Zizi Wang, Qian Zhang, Age-structure model for oncolytic virotherapy, 2022, 15, 1793-5245, 10.1142/S1793524521500911 | |
17. | Zizi Wang, Qian Zhang, Yong Luo, A general non-local delay model on oncolytic virus therapy, 2022, 102, 0307904X, 423, 10.1016/j.apm.2021.09.045 | |
18. | Kyle Nguyen, Erica M. Rutter, Kevin B. Flores, Estimation of Parameter Distributions for Reaction-Diffusion Equations with Competition using Aggregate Spatiotemporal Data, 2023, 85, 0092-8240, 10.1007/s11538-023-01162-3 | |
19. | Mykola Yaremenko, Aspects of Solvability Theory for Quasilinear Parabolic Systems in Specific Form with the Singular Coefficients, 2023, 3, 2732-9941, 8, 10.37394/232020.2023.3.2 | |
20. | V.S. Aswin, J. Manimaran, Nagaiah Chamakuri, Space-time adaptivity for a multi-scale cancer invasion model, 2023, 146, 08981221, 309, 10.1016/j.camwa.2023.07.005 | |
21. | Adam A. Malik, Kyle C. Nguyen, John T. Nardini, Cecilia C. Krona, Kevin B. Flores, Sven Nelander, Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity, 2025, 11, 2056-7189, 10.1038/s41540-025-00492-3 |