Loading [Contrib]/a11y/accessibility-menu.js

Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system

  • Received: 01 September 2013 Accepted: 29 June 2018 Published: 01 March 2014
  • MSC : Primary: 92D25, 92D15; Secondary: 34C60, 92B05.

  • A simple producer-grazer model based on adaptive evolution and ecological stoichiometry is proposed and well explored to examine the patterns and consequences of adaptive changes for the evolutionary trait (i.e., body size), and also to investigate the effect of nutrient enrichment on the coevolutin of the producer and the grazer. The analytical and numerical results indicate that this simple model predicts a wide range of evolutionary dynamics and that the total nutrient concentration in the ecosystem plays a pivotal role in determining the outcome of producer-grazer coevolution. Nutrient enrichment may yield evolutionary branching, trait cycles or sensitive dependence on the initial values, depending on how much nutrient is present in the ecosystem. In the absence of grazing, the lower nutrient density facilitates the continuously stable strategy while the higher nutrient density induces evolutionary branching. When the grazer is present, with the increasing of nutrient level, the evolutionary dynamics is very complicated. The evolutionary dynamics sequentially undergo continuously stable strategy, evolutionary branching, evolutionary cycle, and sensitive dependence on the initial values. Nutrient enrichment asserts not only stabilizing but also destabilizing impact on the evolutionary dynamics. The evolutionary dynamics potentially show the paradox of nutrient enrichment. This study well documents the interplay and co-effect of the ecological and evolutionary processes.

    Citation: Lina Hao, Meng Fan, Xin Wang. Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841

    Related Papers:

    [1] Md Nazmul Hassan, Angela Peace . Mechanistically derived Toxicant-mediated predator-prey model under Stoichiometric constraints. Mathematical Biosciences and Engineering, 2020, 17(1): 349-365. doi: 10.3934/mbe.2020019
    [2] Md Nazmul Hassan, Kelsey Thompson, Gregory Mayer, Angela Peace . Effect of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. Mathematical Biosciences and Engineering, 2019, 16(1): 150-167. doi: 10.3934/mbe.2019008
    [3] Ming Chen, Meng Fan, Congbo Xie, Angela Peace, Hao Wang . Stoichiometric food chain model on discrete time scale. Mathematical Biosciences and Engineering, 2019, 16(1): 101-118. doi: 10.3934/mbe.2019005
    [4] Lale Asik, Jackson Kulik, Kevin Long, Angela Peace . Dynamics of a stoichiometric producer-grazer system with seasonal effects on light level. Mathematical Biosciences and Engineering, 2019, 16(1): 501-515. doi: 10.3934/mbe.2019023
    [5] Irakli Loladze . Iterative chemostat: A modelling framework linking biosynthesis to nutrient cycling on ecological and evolutionary time scales. Mathematical Biosciences and Engineering, 2019, 16(2): 990-1004. doi: 10.3934/mbe.2019046
    [6] Lidan Liu, Meng Fan, Yun Kang . Effect of nutrient supply on cell size evolution of marine phytoplankton. Mathematical Biosciences and Engineering, 2023, 20(3): 4714-4740. doi: 10.3934/mbe.2023218
    [7] Yang Kuang, Jef Huisman, James J. Elser . Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215
    [8] Ming Chen, Meng Fan, Xing Yuan, Huaiping Zhu . Effect of seasonal changing temperature on the growth of phytoplankton. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1091-1117. doi: 10.3934/mbe.2017057
    [9] Qiulin Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao . Dynamic analysis of a new aquatic ecological model based on physical and ecological integrated control. Mathematical Biosciences and Engineering, 2023, 20(1): 930-954. doi: 10.3934/mbe.2023043
    [10] Da Song, Meng Fan, Ming Chen, Hao Wang . Dynamics of a periodic stoichiometric model with application in predicting and controlling algal bloom in Bohai Sea off China. Mathematical Biosciences and Engineering, 2019, 16(1): 119-138. doi: 10.3934/mbe.2019006
  • A simple producer-grazer model based on adaptive evolution and ecological stoichiometry is proposed and well explored to examine the patterns and consequences of adaptive changes for the evolutionary trait (i.e., body size), and also to investigate the effect of nutrient enrichment on the coevolutin of the producer and the grazer. The analytical and numerical results indicate that this simple model predicts a wide range of evolutionary dynamics and that the total nutrient concentration in the ecosystem plays a pivotal role in determining the outcome of producer-grazer coevolution. Nutrient enrichment may yield evolutionary branching, trait cycles or sensitive dependence on the initial values, depending on how much nutrient is present in the ecosystem. In the absence of grazing, the lower nutrient density facilitates the continuously stable strategy while the higher nutrient density induces evolutionary branching. When the grazer is present, with the increasing of nutrient level, the evolutionary dynamics is very complicated. The evolutionary dynamics sequentially undergo continuously stable strategy, evolutionary branching, evolutionary cycle, and sensitive dependence on the initial values. Nutrient enrichment asserts not only stabilizing but also destabilizing impact on the evolutionary dynamics. The evolutionary dynamics potentially show the paradox of nutrient enrichment. This study well documents the interplay and co-effect of the ecological and evolutionary processes.


    [1] Ecology, 75 (1994), 1118-1130.
    [2] J. Theor. Biol., 259 (2009), 209-218.
    [3] Estuaties, 25 (2002), 704-726.
    [4] Phil. Trans. R. Soc. B, 367 (2012), 2935-2944.
    [5] Am. Nat., 176 (2010), 162-176.
    [6] In Primary Productivity and Biogeochemical Cycles in the Sea, 43 (1992), 213-237.
    [7] Am. Nat., 176 (2010), E109-E127.
    [8] Proc. Natl. Acad. Sci. USA, 107 (2010), 121-126.
    [9] J. Math. Biol., 34 (1996), 579-612.
    [10] J. Theor. Biol., 176 (1995), 91-102.
    [11] Am. Nat., 169 (2007), 173-191.
    [12] Am. Nat., 155 (2000), 200-218.
    [13] Am. Nat., 156 (2000), S77-S101.
    [14] J. Mar. Biol. Assoc. UK, 48 (1968), 689-733.
    [15] Phil. Trans. R. Soc. B, 364 (2009), 1491-1498.
    [16] Proc. Natl. Acad. Sci. USA, 102 (2005), 8927-8932.
    [17] J. Plankton. Res., 32 (2010), 119-137.
    [18] Proc. R. Soc. Lond. B, 270 (2003), 1015-1022.
    [19] Funct. Ecol., 21 (2007), 465-477.
    [20] J. EVOL. BIOL., 18 (2005), 1174-1177.
    [21] Evol. Ecol., 12 (1998), 35-57.
    [22] Am. Nat., 166 (2005), 496-505.
    [23] Limnol. Oceanogr., 55 (2010), 2305-2316.
    [24] Phil. Trans. R. Soc. B, 364 (2009), 1579-1591.
    [25] J. Theor. Biol., 197 (1999), 149-162.
    [26] J. Theor. Biol., 246 (2007), 278-289.
    [27] J. Math. Biol., 63 (2011), 901-932.
    [28] Theor. Popul. Biol., 65 (2004), 285-298.
    [29] Proc. Natl. Acad. Sci. USA, 102 (2005), 5761-5766.
    [30] J. Theor. Biol., 217 (2002), 369-381.
    [31] Bull. Math. Biol., 62 (2000), 1137-1162.
    [32] Proc. R. Soc. Lond. B, 265 (1998), 33-38.
    [33] Proc. R. Soc. B, 277 (2010), 3163-3171.
    [34] J. Theor. Biol., 277 (2011), 83-89.
    [35] Ecol. Lett., 4 (2001), 519-529.
    [36] Am. Nat., 95 (1961), 65-79.
    [37] Can. Bull. Fish. Aquat. Sci., 214 (1986), 1-70.
    [38] J. Plankton. Res., 16 (1994), 565-580.
    [39] Science, 171 (1971), 385-387.
    [40] NJ: Princeton University Press, Princeton, 2002.
    [41] Am. Nat., 176 (2010), 367-380.
    [42] Mar. Ecol. Prog. Ser., 379 (2009), 1-12.
    [43] SIAM J. Appl. Math., 68 (2007), 503-522.
    [44] J. Evol. Biol., 18 (2005), 1139-1154.
    [45] Nature Reviews Genetics, 7 (2006), 510-523.
    [46] Springer-Verlag, New York, 1990.
    [47] Nature, 424 (2003), 303-306.
    [48] J. Theor. Biol., 262 (2010), 528-543.
  • This article has been cited by:

    1. Masato Yamamichi, Cédric L. Meunier, Angela Peace, Clay Prater, Megan A. Rúa, Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics, 2015, 124, 00301299, 960, 10.1111/oik.02388
    2. Angélica L. González, Régis Céréghino, Olivier Dézerald, Vinicius F. Farjalla, Céline Leroy, Barbara A. Richardson, Michael J. Richardson, Gustavo Q. Romero, Diane S. Srivastava, Shawn Leroux, Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus‐based communities across Central and South America, 2018, 32, 0269-8463, 2448, 10.1111/1365-2435.13197
    3. Ming Chen, Meng Fan, Xin Wang, EFFECT OF TEMPERATURE ON ADAPTIVE EVOLUTION OF PHYTOPLANKTON CELL SIZE, 2020, 10, 2156-907X, 2644, 10.11948/20200008
    4. Pingping Cong, Meng Fan, Xingfu Zou, Population dynamics of a stoichiometric aquatic tri-trophic level model with fear effect, 2023, 00255564, 109130, 10.1016/j.mbs.2023.109130
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3046) PDF downloads(474) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog