Loading [Contrib]/a11y/accessibility-menu.js

Stoichiometric Plant-Herbivore Models and Their Interpretation

  • Received: 01 May 2004 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 92D25 and 34C60.

  • The purpose of this note is to mechanistically formulate a mathematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorous (P) limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop equation for its growth. Our model takes the simple form of a system of two autonomous ordinary differential equations. It can be shown that our model includes the LKE model (Loladze, Kuang and Elser (2000)) as a special case. Our study reveals that the details of ecological stoichiometry models really matter for quantitative predictions of plant-herbivore dynamics, especially at intermediate ranges of the carrying capacity.

    Citation: Yang Kuang, Jef Huisman, James J. Elser. Stoichiometric Plant-Herbivore Models and Their Interpretation[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215

    Related Papers:

    [1] Guangyu Sui, Meng Fan, Irakli Loladze, Yang Kuang . The dynamics of a stoichiometric plant-herbivore model and its discrete analog. Mathematical Biosciences and Engineering, 2007, 4(1): 29-46. doi: 10.3934/mbe.2007.4.29
    [2] Md Nazmul Hassan, Angela Peace . Mechanistically derived Toxicant-mediated predator-prey model under Stoichiometric constraints. Mathematical Biosciences and Engineering, 2020, 17(1): 349-365. doi: 10.3934/mbe.2020019
    [3] Ming Chen, Menglin Gong, Jimin Zhang, Lale Asik . Comparison of dynamic behavior between continuous- and discrete-time models of intraguild predation. Mathematical Biosciences and Engineering, 2023, 20(7): 12750-12771. doi: 10.3934/mbe.2023569
    [4] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [5] Md Nazmul Hassan, Kelsey Thompson, Gregory Mayer, Angela Peace . Effect of Excess Food Nutrient on Producer-Grazer Model under Stoichiometric and Toxicological Constraints. Mathematical Biosciences and Engineering, 2019, 16(1): 150-167. doi: 10.3934/mbe.2019008
    [6] P. Auger, N. H. Du, N. T. Hieu . Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences and Engineering, 2009, 6(4): 683-700. doi: 10.3934/mbe.2009.6.683
    [7] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile . A non-autonomous stochastic predator-prey model. Mathematical Biosciences and Engineering, 2014, 11(2): 167-188. doi: 10.3934/mbe.2014.11.167
    [8] Paulo Amorim, Bruno Telch, Luis M. Villada . A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257
    [9] Ya Li, Z. Feng . Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences and Engineering, 2010, 7(1): 149-169. doi: 10.3934/mbe.2010.7.149
    [10] Xinru Zhou, Xinmiao Rong, Meng Fan, Josué-Antonio Nescolarde-Selvaa . Stoichiometric modeling of aboveground-belowground interaction of herbaceous plant. Mathematical Biosciences and Engineering, 2019, 16(1): 25-55. doi: 10.3934/mbe.2019002
  • The purpose of this note is to mechanistically formulate a mathematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorous (P) limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop equation for its growth. Our model takes the simple form of a system of two autonomous ordinary differential equations. It can be shown that our model includes the LKE model (Loladze, Kuang and Elser (2000)) as a special case. Our study reveals that the details of ecological stoichiometry models really matter for quantitative predictions of plant-herbivore dynamics, especially at intermediate ranges of the carrying capacity.


  • This article has been cited by:

    1. Harlan Stech, Bruce Peckham, John Pastor, Quasi-equilibrium reduction in a general class of stoichiometric producer–consumer models, 2012, 6, 1751-3758, 992, 10.1080/17513758.2012.713124
    2. Hao Wang, Hal L. Smith, Yang Kuang, James J. Elser, Dynamics of Stoichiometric Bacteria-Algae Interactions in the Epilimnion, 2007, 68, 0036-1399, 503, 10.1137/060665919
    3. Angela Peace, Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models, 2015, 312, 03043800, 125, 10.1016/j.ecolmodel.2015.05.019
    4. Shengnan Zhao, Sanling Yuan, Hao Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, 2020, 268, 00220396, 5113, 10.1016/j.jde.2019.11.004
    5. CONGBO XIE, MENG FAN, WEI ZHAO, DYNAMICS OF A DISCRETE STOICHIOMETRIC TWO PREDATORS ONE PREY MODEL, 2010, 18, 0218-3390, 649, 10.1142/S0218339010003457
    6. Lale Asik, Jackson Kulik, Kevin R. Long, Angela Peace, Seasonal Variation of Nutrient Loading in a Stoichiometric Producer–Consumer System, 2019, 81, 0092-8240, 2768, 10.1007/s11538-019-00629-6
    7. Sanling Yuan, Dongmei Wu, Guijie Lan, Hao Wang, Noise-Induced Transitions in a Nonsmooth Producer–Grazer Model with Stoichiometric Constraints, 2020, 82, 0092-8240, 10.1007/s11538-020-00733-y
    8. Andrew P. Allen, James F. Gillooly, Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling, 2009, 12, 1461023X, 369, 10.1111/j.1461-0248.2009.01302.x
    9. Hao Wang, Yang Kuang, Irakli Loladze, Dynamics of a mechanistically derived stoichiometric producer-grazer model, 2008, 2, 1751-3758, 286, 10.1080/17513750701769881
    10. Mehdi Cherif, Michel Loreau, Towards a more biologically realistic use of Droop's equations to model growth under multiple nutrient limitation, 2010, 119, 00301299, 897, 10.1111/j.1600-0706.2010.18397.x
    11. Xiong Li, Hao Wang, Yang Kuang, Global analysis of a stoichiometric producer–grazer model with Holling type functional responses, 2011, 63, 0303-6812, 901, 10.1007/s00285-010-0392-2
    12. Harlan Stech, Bruce Peckham, John Pastor, Enrichment in a general class of stoichiometric producer–consumer population growth models, 2012, 81, 00405809, 210, 10.1016/j.tpb.2012.01.003
    13. James J. Elser, Irakli Loladze, Angela L. Peace, Yang Kuang, Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints, 2012, 245, 03043800, 3, 10.1016/j.ecolmodel.2012.02.006
    14. E. M. Elsayed, Qamar Din, Period-doubling and Neimark–Sacker bifurcations of plant–herbivore models, 2019, 2019, 1687-1847, 10.1186/s13662-019-2200-7
    15. Qamar Din, M. Sajjad Shabbir, M. Asif Khan, Khalil Ahmad, Bifurcation analysis and chaos control for a plant–herbivore model with weak predator functional response, 2019, 13, 1751-3758, 481, 10.1080/17513758.2019.1638976
    16. Aaron Packer, Yantao Li, Tom Andersen, Qiang Hu, Yang Kuang, Milton Sommerfeld, Growth and neutral lipid synthesis in green microalgae: A mathematical model, 2011, 102, 09608524, 111, 10.1016/j.biortech.2010.06.029
    17. Hao Liu, Aaron Packer, Yang Kuang, Stoichiometric producer-grazer models with varying nitrogen pools and ammonia toxicity, 2014, 7, 1937-1179, 1305, 10.3934/dcdss.2014.7.1305
    18. A stoichiometrically derived algal growth model and its global analysis, 2010, 7, 1551-0018, 825, 10.3934/mbe.2010.7.825
    19. Ming Chen, Meng Fan, Yang Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, 2017, 289, 00255564, 9, 10.1016/j.mbs.2017.04.004
    20. Meng Fan, Irakli Loladze, Yang Kuang ∥, James J. Elser #, Dynamics of a stoichiometric discrete producer-grazer model, 2005, 11, 1023-6198, 347, 10.1080/10236190412331335427
    21. Jana Isanta‐Navarro, Clay Prater, Logan M. Peoples, Irakli Loladze, Tin Phan, Punidan D. Jeyasingh, Matthew J. Church, Yang Kuang, James J. Elser, Revisiting the growth rate hypothesis: Towards a holistic stoichiometric understanding of growth, 2022, 25, 1461-023X, 2324, 10.1111/ele.14096
    22. Juping Ji, Russell Milne, Hao Wang, Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model, 2023, 86, 0303-6812, 10.1007/s00285-023-01866-z
    23. Ming Chen, Hao Wang, Menglin Gong, Discrete-time versus continuous-time toxic predation models, 2022, 28, 1023-6198, 244, 10.1080/10236198.2022.2038586
    24. Yequan Liang, Xiuxiang Liu, Xiao Yu, Threshold dynamics of a periodic stoichiometric model, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023065
    25. Muhammad Sajjad Shabbir, Qamar Din, Manuel De la Sen, J. F. Gómez-Aguilar, Exploring dynamics of plant–herbivore interactions: bifurcation analysis and chaos control with Holling type-II functional response, 2024, 88, 0303-6812, 10.1007/s00285-023-02020-5
    26. Ling Xue, Sitong Chen, Xinmiao Rong, Dynamics of competition model between two plants based on stoichiometry, 2023, 20, 1551-0018, 18888, 10.3934/mbe.2023836
    27. Pingping Cong, Meng Fan, Xingfu Zou, Population dynamics of a stoichiometric aquatic tri-trophic level model with fear effect, 2024, 368, 00255564, 109130, 10.1016/j.mbs.2023.109130
    28. Muhammad Qurban, Abdul Khaliq, Kottakkaran Scooppy Nisar, Nehad Ali Shah, Dynamics and Control of a Plant-Herbivore Model Incorporating Allee's Effect, 2024, 24058440, e30754, 10.1016/j.heliyon.2024.e30754
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3392) PDF downloads(571) Cited by(28)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog