Citation: Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375
[1] | Ali Gharouni, Lin Wang . Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences and Engineering, 2016, 13(5): 969-980. doi: 10.3934/mbe.2016025 |
[2] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347 |
[3] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[4] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[5] | Qianqian Cui, Zhipeng Qiu, Ling Ding . An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1141-1157. doi: 10.3934/mbe.2017059 |
[6] | Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259 |
[7] | Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57 |
[8] | Xia Wang, Shengqiang Liu . Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences and Engineering, 2012, 9(3): 685-695. doi: 10.3934/mbe.2012.9.685 |
[9] | Han Ma, Qimin Zhang . Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination. Mathematical Biosciences and Engineering, 2021, 18(6): 9474-9495. doi: 10.3934/mbe.2021465 |
[10] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
[1] | Oxford University, Oxford, 1991. |
[2] | in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, Y. Zhou and J. Wu), Higher Education Press, 2009, 65-122. |
[3] | in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1956, 81-109. |
[4] | Academic Press, New York, 1979. |
[5] | Appl. Math. Comput., 218 (2011), 4391-4400. |
[6] | 1st edition, John Wiley and Sons, Chichester, 2000. |
[7] | Math. Biosci., 80 (1986), 19-22. |
[8] | J. Dynam. Diff. Equat., 6 (1994), 583-600. |
[9] | Canadian Appl. Math. Quart., 14 (2006), 259-284. |
[10] | Proc. Amer. Math. Soc., 136 (2008), 2793-2802. |
[11] | in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), SIAM, 2003, 211-236. |
[12] | J. Math. Anal. Appl., 308 (2005), 343-364. |
[13] | Math. Med. Biol., 21 (2004), 75-83. |
[14] | Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105-1118. |
[15] | SIAM, Philadelphia, 1976. |
[16] | Math. Biosci., 160 (1999), 191-213. |
[17] | Canadian Appl. Math. Quart., 17 (2009), 175-187. |
[18] | J. Diff. Equat., 284 (2010), 1-20. |
[19] | J. Math. Anal. Appl., 361 (2010), 38-47. |
[20] | Acta Mathematica Scientia, 33 (2013), 341-361. |
[21] | Nonlinear Anal. RWA, 13 (2012), 1581-1592. |
[22] | Cambridge University Press, Cambridge, 1995. |
[23] | Comput. Math. Appl., 60 (2010), 2286-2291. |
[24] | Math. Biosci., 180 (2002), 29-48. |
[25] | Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. |
[26] | Math. Biosci., 190 (2004), 97-112. |
[27] | Nonlinear Anal. RWA, 11 (2010), 995-1004. |
1. | Yoshiaki Muroya, Toshikazu Kuniya, Global stability for a delayed multi-group SIRS epidemic model with cure rate and incomplete recovery rate, 2015, 08, 1793-5245, 1550048, 10.1142/S1793524515500485 | |
2. | Yoichi Enatsu, Toshikazu Kuniya, Yoshiaki Muroya, Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection, 2015, 20, 1531-3492, 3057, 10.3934/dcdsb.2015.20.3057 | |
3. | Raimund Bürger, Gerardo Chowell, Elvis Gavilán, Pep Mulet, Luis M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, 2017, 15, 1551-0018, 95, 10.3934/mbe.2018004 |