Citation: Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models[J]. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
1. | Qiaoling Chen, Zhidong Teng, Lei Wang, Haijun Jiang, The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, 2013, 71, 0924-090X, 55, 10.1007/s11071-012-0641-6 | |
2. | Kei Fushimi, Yoichi Enatsu, Emiko Ishiwata, Global stability of an SIS epidemic model with delays, 2018, 41, 01704214, 5345, 10.1002/mma.5084 | |
3. | Lei Wang, Zhidong Teng, Long Zhang, Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/249623 | |
4. | A. Q. Khan, A. Sharif, Global Dynamics of Some 3 × 6 Systems of Exponential Difference Equations, 2018, 2018, 1026-0226, 1, 10.1155/2018/8362837 | |
5. | Li Yingke, Chen Liang, Wang Kai, Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate, 2011, 2011, 1026-0226, 1, 10.1155/2011/350892 | |
6. | Ying Wang, Zhidong Teng, Mehbuba Rehim, Lyapunov Functions for a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate and Varying Population Sizes, 2014, 2014, 1026-0226, 1, 10.1155/2014/472746 | |
7. | Kaori Saito, 2017, Chapter 15, 978-981-10-6408-1, 231, 10.1007/978-981-10-6409-8_15 | |
8. | Yu Yang, Jinling Zhou, Global stability of a discrete virus dynamics model with diffusion and general infection function, 2019, 96, 0020-7160, 1752, 10.1080/00207160.2018.1527028 | |
9. | Zhidong Teng, Lei Wang, Linfei Nie, Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence, 2015, 38, 01704214, 4741, 10.1002/mma.3389 | |
10. | Ming Liu, Wei Yu, 2017, A new perspective for scheduling the medical resource order and distribution, 978-988-15639-3-4, 2756, 10.23919/ChiCC.2017.8027782 | |
11. | Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, Stability Analysis for a Discrete SIR Epidemic Model with Delay and General Nonlinear Incidence Function, 2018, 09, 2152-7385, 1039, 10.4236/am.2018.99070 | |
12. | Omar Zakary, Mostafa Rachik, Ilias Elmouki, On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach, 2017, 5, 2195-268X, 917, 10.1007/s40435-016-0233-2 | |
13. | Deqiong Ding, Xiaohua Ding, Dynamic consistent non-standard numerical scheme for a dengue disease transmission model, 2014, 20, 1023-6198, 492, 10.1080/10236198.2013.858715 | |
14. | A. Q. Khan, M. S. M. Noorani, H. S. Alayachi, Global Dynamics of Higher-Order Exponential Systems of Difference Equations, 2019, 2019, 1026-0226, 1, 10.1155/2019/3825927 | |
15. | A. Q. Khan, Global dynamics of a 3 × 6 exponential system of difference equations , 2019, 42, 0170-4214, 7243, 10.1002/mma.5833 | |
16. | Deqiong Ding, Wendi Qin, Xiaohua Ding, Lyapunov functions and global stability for a discretized multigroup SIR epidemic model, 2015, 20, 1553-524X, 1971, 10.3934/dcdsb.2015.20.1971 | |
17. | S. Alonso-Quesada, M. De la Sen, A. Ibeas, On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination, 2017, 42, 10075704, 247, 10.1016/j.cnsns.2016.05.027 | |
18. | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Giuseppe Izzo, Antonia Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, 2012, 18, 1023-6198, 1163, 10.1080/10236198.2011.555405 | |
19. | Yu Yang, Xinsheng Ma, Yahui Li, Global stability of a discrete virus dynamics model with Holling type-II infection function, 2016, 39, 01704214, 2078, 10.1002/mma.3624 | |
20. | Yoshiaki Muroya, Yoichi Enatsu, A discrete-time analogue preserving the global stability of a continuous SEIS epidemic model, 2013, 19, 1023-6198, 1463, 10.1080/10236198.2012.757602 | |
21. | Jinling Zhou, Yu Yang, Tonghua Zhang, Global stability of a discrete multigroup SIR model with nonlinear incidence rate, 2017, 40, 01704214, 5370, 10.1002/mma.4391 | |
22. | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability for a discrete SIS epidemic model with immigration of infectives, 2012, 18, 1023-6198, 1913, 10.1080/10236198.2011.602973 | |
23. | Yueli Luo, Shujing Gao, Dehui Xie, Yanfei Dai, A discrete plant disease model with roguing and replanting, 2015, 2015, 1687-1847, 10.1186/s13662-014-0332-3 | |
24. | Deqiong Ding, Qiang Ma, Xiaohua Ding, A non-standard finite difference scheme for an epidemic model with vaccination, 2013, 19, 1023-6198, 179, 10.1080/10236198.2011.614606 | |
25. | Brahim EL Boukari, Khalid Hattaf, Noura Yousfi, A Discrete Model for HIV Infection with Distributed Delay, 2014, 2014, 1687-9643, 1, 10.1155/2014/138094 | |
26. | Aboudramane Guiro, Diène Ngom, Dramane Ouedraogo, Stability analysis for a class of discrete schistosomiasis models with general incidence, 2017, 2017, 1687-1847, 10.1186/s13662-017-1174-6 | |
27. | Yoshiaki Muroya, Alfredo Bellen, Yoichi Enatsu, Yukihiko Nakata, Global stability for a discrete epidemic model for disease with immunity and latency spreading in a heterogeneous host population, 2012, 13, 14681218, 258, 10.1016/j.nonrwa.2011.07.031 | |
28. | Hui Cao, Huan Wu, Xiaoqin Wang, Bifurcation analysis of a discrete SIR epidemic model with constant recovery, 2020, 2020, 1687-1847, 10.1186/s13662-020-2510-9 | |
29. | Yoshiaki Muroya, Yukihiko Nakata, Giuseppe Izzo, Antonia Vecchio, Permanence and global stability of a class of discrete epidemic models, 2011, 12, 14681218, 2105, 10.1016/j.nonrwa.2010.12.025 | |
30. | Abdul Qadeer Khan, Global dynamics of two systems of exponential difference equations by Lyapunov function, 2014, 2014, 1687-1847, 10.1186/1687-1847-2014-297 | |
31. | Xiaolin Fan, Lei Wang, Zhidong Teng, Global dynamics for a class of discrete SEIRS epidemic models with general nonlinear incidence, 2016, 2016, 1687-1847, 10.1186/s13662-016-0846-y | |
32. | YOICHI ENATSU, YOSHIAKI MUROYA, A SIMPLE DISCRETE-TIME ANALOGUE PRESERVING THE GLOBAL STABILITY OF A CONTINUOUS SIRS EPIDEMIC MODEL, 2013, 06, 1793-5245, 1350001, 10.1142/S1793524513500010 | |
33. | Yuhua Long, Lin Wang, Global dynamics of a delayed two-patch discrete SIR disease model, 2020, 83, 10075704, 105117, 10.1016/j.cnsns.2019.105117 | |
34. | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, 2012, 13, 14681218, 2120, 10.1016/j.nonrwa.2012.01.007 | |
35. | Alberto d’Onofrio, Piero Manfredi, Ernesto Salinelli, Dynamic behaviour of a discrete-time SIR model with information dependent vaccine uptake, 2016, 22, 1023-6198, 485, 10.1080/10236198.2015.1107549 | |
36. | Wendi Qin, Lisha Wang, Xiaohua Ding, A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion, 2014, 20, 1023-6198, 1641, 10.1080/10236198.2014.968565 | |
37. | Q. Din, K. A. Khan, A. Nosheen, Stability Analysis of a System of Exponential Difference Equations, 2014, 2014, 1026-0226, 1, 10.1155/2014/375890 | |
38. | Lijun Zhang, Shujing Gao, Qin Zou, A Non-Standard Finite Difference Scheme of a Multiple Infected Compartments Model for Waterborne Disease, 2020, 28, 0971-3514, 59, 10.1007/s12591-016-0296-8 | |
39. | Qamar Din, Qualitative behavior of a discrete SIR epidemic model, 2016, 09, 1793-5245, 1650092, 10.1142/S1793524516500923 | |
40. | Abraham J. Arenas, Gilberto González-Parra, Jhon J. Naranjo, Myladis Cogollo, Nicolás De La Espriella, Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay, 2021, 9, 2227-7390, 257, 10.3390/math9030257 | |
41. | A. Gómez-Corral, M. López-García, M. T. Rodríguez-Bernal, On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis, 2021, 82, 0303-6812, 10.1007/s00285-021-01598-y | |
42. | Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen, The threshold dynamics of a discrete-time echinococcosis transmission model, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020339 | |
43. | Lei Wang, Qianqian Cui, Zhidong Teng, Global dynamics in a class of discrete-time epidemic models with disease courses, 2013, 2013, 1687-1847, 10.1186/1687-1847-2013-57 | |
44. | On Numerical Methods for Second-Order Nonlinear Ordinary Differential Equations (ODEs): A Reduction To A System Of First-Order ODEs, 2019, 1, 2637-1138, 1, 10.46754/umtjur.v1i4.86 | |
45. | Shifan Luo, Dongshu Wang, Wenxiu Li, Dynamic analysis of a SIV Filippov system with media coverage and protective measures, 2022, 7, 2473-6988, 13469, 10.3934/math.2022745 | |
46. | Eduardo V. M. dos Reis, Marcelo A. Savi, A dynamical map to describe COVID-19 epidemics, 2022, 231, 1951-6355, 893, 10.1140/epjs/s11734-021-00340-5 | |
47. | Sebastian J. Schreiber, Shuo Huang, Jifa Jiang, Hao Wang, Extinction and Quasi-Stationarity for Discrete-Time, Endemic SIS and SIR Models, 2021, 81, 0036-1399, 2195, 10.1137/20M1339015 | |
48. | Z. Eskandari, R. Khoshsiar Ghaziani, Z. Avazzadeh, Bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals, 2023, 16, 1793-5245, 10.1142/S1793524522501200 | |
49. | Miao Ouyang, Qianhong Zhang, Zili Chen, Balanced harvesting of dynamical discrete Ricker & Beverton–Holt system, 2023, 170, 09600779, 113384, 10.1016/j.chaos.2023.113384 | |
50. | Phong MAİ NAM, Global Behavior of a System of Second-Order Rational Difference Equations, 2021, 4, 2651-4001, 150, 10.33434/cams.938775 | |
51. | Jiapu Zhang, 2023, Chapter 28, 978-3-031-36772-4, 897, 10.1007/978-3-031-36773-1_28 | |
52. | Gülşah Yeni, Elvan Akın, Naveen K. Vaidya, Time scale theory on stability of explicit and implicit discrete epidemic models: applications to Swine flu outbreak, 2024, 88, 0303-6812, 10.1007/s00285-023-02015-2 | |
53. | Xiaoqi Liu, Qingyuan Hu, Jie Wang, Xusheng Wu, Dehua Hu, Difference in Rumor Dissemination and Debunking Before and After the Relaxation of COVID-19 Prevention and Control Measures in China: Infodemiology Study, 2024, 26, 1438-8871, e48564, 10.2196/48564 | |
54. | Yutao Yan, Shuzhen Yu, Zhiyong Yu, Haijun Jiang, Hui Wang, Global dynamics of delayed discrete-time SEIR negative information propagation model with multi-platform and cross-transmission mechanism, 2025, 10075704, 108591, 10.1016/j.cnsns.2025.108591 |