Spatiotemporal complexity in a predator--prey model with weak Allee effects

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 35B36, 45M10; Secondary: 92C15.

  • In this article, we study the rich dynamics of a diffusive predator-prey system with Allee effects in the prey growth. Our model assumes a prey-dependent Holling type-II functional response and a density dependent death rate for predator. We investigate the dissipation and persistence property, the stability of nonnegative and positive constant steady state of the model, as well as the existence of Hopf bifurcation at the positive constant solution. In addition, we provide results on the existence and non-existence of positive non-constant solutions of the model. We also demonstrate the Turing instability under some conditions, and find that our model exhibits a diffusion-controlled formation growth of spots, stripes, and holes pattern replication via numerical simulations. One of the most interesting findings is that Turing instability in the model is induced by the density dependent death rate in predator.

    Citation: Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247

    Related Papers:

    [1] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [2] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [3] Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331
    [4] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [5] Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
    [6] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
    [7] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
    [8] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [9] Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108
    [10] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
  • In this article, we study the rich dynamics of a diffusive predator-prey system with Allee effects in the prey growth. Our model assumes a prey-dependent Holling type-II functional response and a density dependent death rate for predator. We investigate the dissipation and persistence property, the stability of nonnegative and positive constant steady state of the model, as well as the existence of Hopf bifurcation at the positive constant solution. In addition, we provide results on the existence and non-existence of positive non-constant solutions of the model. We also demonstrate the Turing instability under some conditions, and find that our model exhibits a diffusion-controlled formation growth of spots, stripes, and holes pattern replication via numerical simulations. One of the most interesting findings is that Turing instability in the model is induced by the density dependent death rate in predator.


    [1] Ecology, 75 (1994), 1842-1850.
    [2] Trends in Ecology & Evolution, 15 (2000), 337-341.
    [3] Nonlinear Analysis: Real World Applications, 10 (2009), 1401-1416.
    [4] SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262.
    [5] Ecology, 76 (1995), 995-1004.
    [6] Journal of Differential Equations, 33 (1979), 201-225.
    [7] University of Chicago Press, Chicago, USA, 1931.
    [8] Ecology, 83 (2002), 28-34.
    [9] Journal of Theoretical Biology, 139 (1989), 311-326.
    [10] Journal of Mathematical Biology, 33 (1995), 816-828.
    [11] Mathematical Biosciences, 236 (2012), 64-76.
    [12] Theoretical Ecology, 4 (2011), 37-53.
    [13] Journal of Theoretical Biology, 245 (2007), 220-229.
    [14] Bulletin of Mathematical Biology, 55 (1993), 365-384.
    [15] Ecology, 73 (1992), 1530-1535.
    [16] Mathematical Methods in the Applied Sciences, 36 (2013), 1768-1775.
    [17] Journal of Theoretical Biology, 218 (2002), 375-394.
    [18] Theoretical Population Biology, 72 (2007), 136-147.
    [19] Springer, 2003.
    [20] Journal of Differential Equations, 40 (1981), 232-252.
    [21] International Journal of Biomathematics, 5 (2012), 1250023, 11 pp.
    [22] Wiley, London, 2003.
    [23] SIAM Journal of Appllied Mathematics, 35 (1978), 1-16.
    [24] Ecology, 63 (1982), 1802-1813.
    [25] Natural Resource Modeling, 3 (1989), 481-538.
    [26] Journal of Mathematical Analysis and Applications, 339 (2008), 1220-1230.
    [27] Journal of Theoretical Biology, 69 (1977), 613-623.
    [28] Bulletin of Mathematical Biology, 69 (2007), 931-956.
    [29] Springer-Verlag, Berlin and New York, 1983.
    [30] Nonlinear Analysis: Real World Applications, 12 (2011), 2931-2942.
    [31] Journal of Mathematical Biology, 60 (2010), 59-74.
    [32] Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.
    [33] Journal of Mathematical Biology, 42 (2001), 489-506.
    [34] Journal of Mathematical Analysis and Applications, 238 (1999), 179-195.
    [35] Journal of Mathematical Biology, 67 (2013), 1227-1259.
    [36] Journal of Mathematical Analysis and Applications, 344 (2008), 217-230.
    [37] Journal of Mathematical Biology, 28 (1990), 463-474.
    [38] Fields Institute Communication, 21 (1999), 325-337.
    [39] Journal of Mathematical Biology, 36 (1998), 389-406.
    [40] Mathematical Biosciences, 88 (1988), 67-84.
    [41] Ecology, 73 (1992), 1943-1967.
    [42] Theoretical Population Biology, 43 (1993), 141-158.
    [43] Journal of Differential Equations, 72 (1988), 1-27.
    [44] Proceedings of the American Mathematical Society, 133 (2005), 3619-3626.
    [45] Journal of Differential Equations, 131 (1996), 79-131.
    [46] SIAM Review, 44 (2002), 311-370.
    [47] Springer, 2000.
    [48] Chaos, Solitons & Fractals, 23 (2005), 55-65.
    [49] Physica D: Nonlinear Phenomena, 188 (2004), 134-151.
    [50] Chaos, Solitons & Fractals, 37 (2008), 1343-1355.
    [51] Bulletin of Mathematical Biology, 71 (2009), 863-887.
    [52] Proceedings of the Royal Society of London-B: Biological Sciences, 271 (2004), 1407-1414.
    [53] Bulletin of Mathematical Biology, 52 (1990), 119-152.
    [54] Springer, New York, USA, 2002.
    [55] Notices of the AMS, 48 (2001), 1304-1314.
    [56] Proceedings of the Royal Society of Edinburgh-A-Mathematics, 133 (2003), 919-942.
    [57] Journal of Differential Equations, 200 (2004), 245-273.
    [58] Journal of Differential Equations, 247 (2009), 866-886.
    [59] SIAM Journal on Applied Mathematics, 67 (2007), 1479-1503.
    [60] Nonlinearity, 21 (2008), 1471.
    [61] Theoretical Population Biology, 53 (1998), 108-130.
    [62] Transactions of the American Fisheries Society, 111 (1982), 255-266.
    [63] Mathematical Biosciences, 122 (1994), 1-23.
    [64] Springer-Verlag, New York, 1994.
    [65] Ecology, 58 (1977), 1237-1253.
    [66] Trends in Ecology & Evolution, 14 (1999), 401-405.
    [67] Oikos, (1999), 185-190.
    [68] Theoretical Ecology, 5 (2012), 297-309.
    [69] Princeton University Press, 2003.
    [70] Philosophical Transactions of the Royal Society of London-B, 237 (1952), 37-72.
    [71] Journal of Biological Dynamics, 6 (2012), 524-538.
    [72] Journal of Differential Equations, 251 (2011), 1276-1304.
    [73] Science Press, Beijing, 1993.
    [74] Journal of Mathematical Analysis and Applications, 292 (2004), 484-505.
    [75] Physica D, 196 (2004), 172-192.
    [76] Computers and Mathematics with Applications, 52 (2006), 707-720.
    [77] Physical Review E, 75 (2007), 051913.
    [78] Ecological Modelling, 221 (2010), 131-140.
    [79] World Scientific, 2006.
    [80] SIAM Journal on Applied Mathematics, 61 (2001), 1445-1472.
    [81] Applied Mathematics and Computation, 159 (2004), 863-880.
    [82] Theoretical Population Biology, 67 (2005), 23-31.
  • This article has been cited by:

    1. Isam Al-Darabsah, Xianhua Tang, Yuan Yuan, A prey-predator model with migrations and delays, 2016, 21, 1531-3492, 737, 10.3934/dcdsb.2016.21.737
    2. Dana Contreras Julio, Pablo Aguirre, Allee thresholds and basins of attraction in a predation model with double Allee effect, 2018, 41, 0170-4214, 2699, 10.1002/mma.4774
    3. Manoj Kumar Singh, 2020, 2253, 0094-243X, 020003, 10.1063/5.0019202
    4. Swadesh Pal, S. Ghorai, Malay Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model, 2019, 310, 00255564, 96, 10.1016/j.mbs.2019.01.011
    5. Yao Shi, Jianhua Wu, Qian Cao, Analysis on a diffusive multiple Allee effects predator–prey model induced by fear factors, 2021, 59, 14681218, 103249, 10.1016/j.nonrwa.2020.103249
    6. Yexuan Li, Hua Liu, Yumei Wei, Ming Ma, Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay, 2020, 1707, 1742-6588, 012025, 10.1088/1742-6596/1707/1/012025
    7. Feng Rao, Yun Kang, The complex dynamics of a diffusive prey–predator model with an Allee effect in prey, 2016, 28, 1476945X, 123, 10.1016/j.ecocom.2016.07.001
    8. Xiaoyan Gao, Sadia Ishag, Shengmao Fu, Wanjun Li, Weiming Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator–prey model with predator harvesting, 2020, 51, 14681218, 102962, 10.1016/j.nonrwa.2019.102962
    9. Kalyan Manna, Swadesh Pal, Malay Banerjee, Analytical and numerical detection of traveling wave and wave-train solutions in a prey–predator model with weak Allee effect, 2020, 100, 0924-090X, 2989, 10.1007/s11071-020-05655-x
    10. Sten Madec, Jérôme Casas, Guy Barles, Christelle Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, 2017, 75, 0303-6812, 543, 10.1007/s00285-017-1093-x
    11. G. Gambino, M. C. Lombardo, M. Sammartino, Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012220
    12. Kalyan Manna, Malay Banerjee, Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth, 2018, 36, 1476945X, 206, 10.1016/j.ecocom.2018.09.001
    13. Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910
    14. Conghui Zhang, Hailong Yuan, Positive Solutions of a Predator–Prey Model with Additive Allee Effect, 2020, 30, 0218-1274, 2050068, 10.1142/S0218127420500686
    15. Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states of a density-dependent predator-prey model with diffusion, 2017, 22, 1531-3492, 16, 10.3934/dcdsb.2017209
    16. Yongli Song, Xiaosong Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis, 2017, 139, 00222526, 371, 10.1111/sapm.12165
    17. Yuri V. Tyutyunov, Deeptajyoti Sen, Lyudmila I. Titova, Malay Banerjee, Predator overcomes the Allee effect due to indirect prey–taxis, 2019, 39, 1476945X, 100772, 10.1016/j.ecocom.2019.100772
    18. Kolade M. Owolabi, Dumitru Baleanu, Emergent patterns in diffusive Turing-like systems with fractional-order operator, 2021, 0941-0643, 10.1007/s00521-021-05917-8
    19. Ye Xuan Li, Hua Liu, Yu Mei Wei, Ming Ma, Gang Ma, Jing Yan Ma, Ljubisa Kocinac, Population Dynamic Study of Prey-Predator Interactions with Weak Allee Effect, Fear Effect, and Delay, 2022, 2022, 2314-4785, 1, 10.1155/2022/8095080
    20. Feng Yang, Yongli Song, Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition, 2022, 194, 03784754, 159, 10.1016/j.matcom.2021.11.013
    21. Naveed Ahmad Khan, Muhammad Sulaiman, Jamel Seidu, Fahad Sameer Alshammari, Chenguang Yang, Mathematical Analysis of the Prey-Predator System with Immigrant Prey Using the Soft Computing Technique, 2022, 2022, 1607-887X, 1, 10.1155/2022/1241761
    22. Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator, 2022, 160, 09600779, 112267, 10.1016/j.chaos.2022.112267
    23. Malay Banerjee, Swadesh Pal, Pranali Roy Chowdhury, Stationary and non-stationary pattern formation over fragmented habitat, 2022, 162, 09600779, 112412, 10.1016/j.chaos.2022.112412
    24. Yingzi Liu, Zhong Li, Mengxin He, Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect, 2023, 20, 1551-0018, 8632, 10.3934/mbe.2023379
    25. Wenbin Yang, Xin Chang, Hopf bifurcation and Turing patterns for a diffusive predator–prey system with weak Allee effect, 2023, 0035-5038, 10.1007/s11587-023-00824-7
    26. Kalyan Manna, Malay Banerjee, Dynamics of a prey–predator model with reproductive Allee effect for prey and generalist predator, 2024, 0924-090X, 10.1007/s11071-024-09451-9
    27. Kalyan Manna, Swadesh Pal, Malay Banerjee, Effects of spatiotemporal, temporal and spatial nonlocal prey competitions on population distributions for a prey-predator system with generalist predation, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025106
    28. R.P. Gupta, Shristi Tiwari, Arun Kumar, The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment, 2025, 229, 03784754, 652, 10.1016/j.matcom.2024.10.022
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3307) PDF downloads(541) Cited by(27)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog