Citation: Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
[1] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
[2] | Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857 |
[3] | Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331 |
[4] | Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282 |
[5] | Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070 |
[6] | Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818 |
[7] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[8] | Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116 |
[9] | Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108 |
[10] | Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121 |
[1] | Ecology, 75 (1994), 1842-1850. |
[2] | Trends in Ecology & Evolution, 15 (2000), 337-341. |
[3] | Nonlinear Analysis: Real World Applications, 10 (2009), 1401-1416. |
[4] | SIAM Journal on Applied Mathematics, 69 (2009), 1244-1262. |
[5] | Ecology, 76 (1995), 995-1004. |
[6] | Journal of Differential Equations, 33 (1979), 201-225. |
[7] | University of Chicago Press, Chicago, USA, 1931. |
[8] | Ecology, 83 (2002), 28-34. |
[9] | Journal of Theoretical Biology, 139 (1989), 311-326. |
[10] | Journal of Mathematical Biology, 33 (1995), 816-828. |
[11] | Mathematical Biosciences, 236 (2012), 64-76. |
[12] | Theoretical Ecology, 4 (2011), 37-53. |
[13] | Journal of Theoretical Biology, 245 (2007), 220-229. |
[14] | Bulletin of Mathematical Biology, 55 (1993), 365-384. |
[15] | Ecology, 73 (1992), 1530-1535. |
[16] | Mathematical Methods in the Applied Sciences, 36 (2013), 1768-1775. |
[17] | Journal of Theoretical Biology, 218 (2002), 375-394. |
[18] | Theoretical Population Biology, 72 (2007), 136-147. |
[19] | Springer, 2003. |
[20] | Journal of Differential Equations, 40 (1981), 232-252. |
[21] | International Journal of Biomathematics, 5 (2012), 1250023, 11 pp. |
[22] | Wiley, London, 2003. |
[23] | SIAM Journal of Appllied Mathematics, 35 (1978), 1-16. |
[24] | Ecology, 63 (1982), 1802-1813. |
[25] | Natural Resource Modeling, 3 (1989), 481-538. |
[26] | Journal of Mathematical Analysis and Applications, 339 (2008), 1220-1230. |
[27] | Journal of Theoretical Biology, 69 (1977), 613-623. |
[28] | Bulletin of Mathematical Biology, 69 (2007), 931-956. |
[29] | Springer-Verlag, Berlin and New York, 1983. |
[30] | Nonlinear Analysis: Real World Applications, 12 (2011), 2931-2942. |
[31] | Journal of Mathematical Biology, 60 (2010), 59-74. |
[32] | Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. |
[33] | Journal of Mathematical Biology, 42 (2001), 489-506. |
[34] | Journal of Mathematical Analysis and Applications, 238 (1999), 179-195. |
[35] | Journal of Mathematical Biology, 67 (2013), 1227-1259. |
[36] | Journal of Mathematical Analysis and Applications, 344 (2008), 217-230. |
[37] | Journal of Mathematical Biology, 28 (1990), 463-474. |
[38] | Fields Institute Communication, 21 (1999), 325-337. |
[39] | Journal of Mathematical Biology, 36 (1998), 389-406. |
[40] | Mathematical Biosciences, 88 (1988), 67-84. |
[41] | Ecology, 73 (1992), 1943-1967. |
[42] | Theoretical Population Biology, 43 (1993), 141-158. |
[43] | Journal of Differential Equations, 72 (1988), 1-27. |
[44] | Proceedings of the American Mathematical Society, 133 (2005), 3619-3626. |
[45] | Journal of Differential Equations, 131 (1996), 79-131. |
[46] | SIAM Review, 44 (2002), 311-370. |
[47] | Springer, 2000. |
[48] | Chaos, Solitons & Fractals, 23 (2005), 55-65. |
[49] | Physica D: Nonlinear Phenomena, 188 (2004), 134-151. |
[50] | Chaos, Solitons & Fractals, 37 (2008), 1343-1355. |
[51] | Bulletin of Mathematical Biology, 71 (2009), 863-887. |
[52] | Proceedings of the Royal Society of London-B: Biological Sciences, 271 (2004), 1407-1414. |
[53] | Bulletin of Mathematical Biology, 52 (1990), 119-152. |
[54] | Springer, New York, USA, 2002. |
[55] | Notices of the AMS, 48 (2001), 1304-1314. |
[56] | Proceedings of the Royal Society of Edinburgh-A-Mathematics, 133 (2003), 919-942. |
[57] | Journal of Differential Equations, 200 (2004), 245-273. |
[58] | Journal of Differential Equations, 247 (2009), 866-886. |
[59] | SIAM Journal on Applied Mathematics, 67 (2007), 1479-1503. |
[60] | Nonlinearity, 21 (2008), 1471. |
[61] | Theoretical Population Biology, 53 (1998), 108-130. |
[62] | Transactions of the American Fisheries Society, 111 (1982), 255-266. |
[63] | Mathematical Biosciences, 122 (1994), 1-23. |
[64] | Springer-Verlag, New York, 1994. |
[65] | Ecology, 58 (1977), 1237-1253. |
[66] | Trends in Ecology & Evolution, 14 (1999), 401-405. |
[67] | Oikos, (1999), 185-190. |
[68] | Theoretical Ecology, 5 (2012), 297-309. |
[69] | Princeton University Press, 2003. |
[70] | Philosophical Transactions of the Royal Society of London-B, 237 (1952), 37-72. |
[71] | Journal of Biological Dynamics, 6 (2012), 524-538. |
[72] | Journal of Differential Equations, 251 (2011), 1276-1304. |
[73] | Science Press, Beijing, 1993. |
[74] | Journal of Mathematical Analysis and Applications, 292 (2004), 484-505. |
[75] | Physica D, 196 (2004), 172-192. |
[76] | Computers and Mathematics with Applications, 52 (2006), 707-720. |
[77] | Physical Review E, 75 (2007), 051913. |
[78] | Ecological Modelling, 221 (2010), 131-140. |
[79] | World Scientific, 2006. |
[80] | SIAM Journal on Applied Mathematics, 61 (2001), 1445-1472. |
[81] | Applied Mathematics and Computation, 159 (2004), 863-880. |
[82] | Theoretical Population Biology, 67 (2005), 23-31. |
1. | Isam Al-Darabsah, Xianhua Tang, Yuan Yuan, A prey-predator model with migrations and delays, 2016, 21, 1531-3492, 737, 10.3934/dcdsb.2016.21.737 | |
2. | Dana Contreras Julio, Pablo Aguirre, Allee thresholds and basins of attraction in a predation model with double Allee effect, 2018, 41, 0170-4214, 2699, 10.1002/mma.4774 | |
3. | Manoj Kumar Singh, 2020, 2253, 0094-243X, 020003, 10.1063/5.0019202 | |
4. | Swadesh Pal, S. Ghorai, Malay Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model, 2019, 310, 00255564, 96, 10.1016/j.mbs.2019.01.011 | |
5. | Yao Shi, Jianhua Wu, Qian Cao, Analysis on a diffusive multiple Allee effects predator–prey model induced by fear factors, 2021, 59, 14681218, 103249, 10.1016/j.nonrwa.2020.103249 | |
6. | Yexuan Li, Hua Liu, Yumei Wei, Ming Ma, Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay, 2020, 1707, 1742-6588, 012025, 10.1088/1742-6596/1707/1/012025 | |
7. | Feng Rao, Yun Kang, The complex dynamics of a diffusive prey–predator model with an Allee effect in prey, 2016, 28, 1476945X, 123, 10.1016/j.ecocom.2016.07.001 | |
8. | Xiaoyan Gao, Sadia Ishag, Shengmao Fu, Wanjun Li, Weiming Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator–prey model with predator harvesting, 2020, 51, 14681218, 102962, 10.1016/j.nonrwa.2019.102962 | |
9. | Kalyan Manna, Swadesh Pal, Malay Banerjee, Analytical and numerical detection of traveling wave and wave-train solutions in a prey–predator model with weak Allee effect, 2020, 100, 0924-090X, 2989, 10.1007/s11071-020-05655-x | |
10. | Sten Madec, Jérôme Casas, Guy Barles, Christelle Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, 2017, 75, 0303-6812, 543, 10.1007/s00285-017-1093-x | |
11. | G. Gambino, M. C. Lombardo, M. Sammartino, Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012220 | |
12. | Kalyan Manna, Malay Banerjee, Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth, 2018, 36, 1476945X, 206, 10.1016/j.ecocom.2018.09.001 | |
13. | Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910 | |
14. | Conghui Zhang, Hailong Yuan, Positive Solutions of a Predator–Prey Model with Additive Allee Effect, 2020, 30, 0218-1274, 2050068, 10.1142/S0218127420500686 | |
15. | Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states of a density-dependent predator-prey model with diffusion, 2017, 22, 1531-3492, 16, 10.3934/dcdsb.2017209 | |
16. | Yongli Song, Xiaosong Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis, 2017, 139, 00222526, 371, 10.1111/sapm.12165 | |
17. | Yuri V. Tyutyunov, Deeptajyoti Sen, Lyudmila I. Titova, Malay Banerjee, Predator overcomes the Allee effect due to indirect prey–taxis, 2019, 39, 1476945X, 100772, 10.1016/j.ecocom.2019.100772 | |
18. | Kolade M. Owolabi, Dumitru Baleanu, Emergent patterns in diffusive Turing-like systems with fractional-order operator, 2021, 0941-0643, 10.1007/s00521-021-05917-8 | |
19. | Ye Xuan Li, Hua Liu, Yu Mei Wei, Ming Ma, Gang Ma, Jing Yan Ma, Ljubisa Kocinac, Population Dynamic Study of Prey-Predator Interactions with Weak Allee Effect, Fear Effect, and Delay, 2022, 2022, 2314-4785, 1, 10.1155/2022/8095080 | |
20. | Feng Yang, Yongli Song, Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition, 2022, 194, 03784754, 159, 10.1016/j.matcom.2021.11.013 | |
21. | Naveed Ahmad Khan, Muhammad Sulaiman, Jamel Seidu, Fahad Sameer Alshammari, Chenguang Yang, Mathematical Analysis of the Prey-Predator System with Immigrant Prey Using the Soft Computing Technique, 2022, 2022, 1607-887X, 1, 10.1155/2022/1241761 | |
22. | Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator, 2022, 160, 09600779, 112267, 10.1016/j.chaos.2022.112267 | |
23. | Malay Banerjee, Swadesh Pal, Pranali Roy Chowdhury, Stationary and non-stationary pattern formation over fragmented habitat, 2022, 162, 09600779, 112412, 10.1016/j.chaos.2022.112412 | |
24. | Yingzi Liu, Zhong Li, Mengxin He, Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect, 2023, 20, 1551-0018, 8632, 10.3934/mbe.2023379 | |
25. | Wenbin Yang, Xin Chang, Hopf bifurcation and Turing patterns for a diffusive predator–prey system with weak Allee effect, 2023, 0035-5038, 10.1007/s11587-023-00824-7 | |
26. | Kalyan Manna, Malay Banerjee, Dynamics of a prey–predator model with reproductive Allee effect for prey and generalist predator, 2024, 0924-090X, 10.1007/s11071-024-09451-9 | |
27. | Kalyan Manna, Swadesh Pal, Malay Banerjee, Effects of spatiotemporal, temporal and spatial nonlocal prey competitions on population distributions for a prey-predator system with generalist predation, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025106 | |
28. | R.P. Gupta, Shristi Tiwari, Arun Kumar, The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment, 2025, 229, 03784754, 652, 10.1016/j.matcom.2024.10.022 |