Loading [Contrib]/a11y/accessibility-menu.js

Modeling bacterial attachment to surfaces as an early stage of biofilm development

  • Received: 01 June 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation.In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set.The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation.Our work gives rise to results that agree with the biological description of the early stages of biofilm formation.

    Citation: Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821

    Related Papers:

    [1] Yousef Rohanizadegan, Stefanie Sonner, Hermann J. Eberl . Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation. Mathematical Biosciences and Engineering, 2020, 17(3): 2236-2271. doi: 10.3934/mbe.2020119
    [2] Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier . Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355
    [3] Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421
    [4] Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319
    [5] Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547
    [6] Donna J. Cedio-Fengya, John G. Stevens . Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences and Engineering, 2006, 3(4): 615-634. doi: 10.3934/mbe.2006.3.615
    [7] Jack M. Hughes, Hermann J. Eberl, Stefanie Sonner . A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs. Mathematical Biosciences and Engineering, 2022, 19(7): 6582-6619. doi: 10.3934/mbe.2022310
    [8] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [9] Silogini Thanarajah, Hao Wang . Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399
    [10] Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl . Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215
  • Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation.In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set.The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation.Our work gives rise to results that agree with the biological description of the early stages of biofilm formation.


    [1] John Wiley and Sons Inc., New York, NY Publisher, 1984.
    [2] New Scientist, 151 (1996), 32-36.
    [3] Journal of Theoretical Biology, 289 (2001), 90-95.
    [4] FEMS Microbiol Review, (2009) 1-19.
    [5] Biotechnology and Bioengineering, 58 (1997).
    [6] Journal of Desalination, 250 (2010), 390-394.
    [7] 2003.
    [8] SIAM Journal, 62 (2002), 1728-1771.
    [9] Journal of Environmental Microbiology, 12 (2010), 557-566.
    [10] Computational Biology and Chemistry, 33 (2009), 269-274.
    [11] Physical Review E, 66 (2002).
    [12] Physical Review E, 66 (2002).
    [13] Nature Journal, 368 (1994), 46-49.
    [14] Bull. Math. Biol., 68 (2009), 1033-1037.
    [15] Journal of Theoretical Biology, 26 (1970), 399-415.
    [16] Journal of Theoretical Biology, 30 (1971), 225-234.
    [17] Journal of Theoretical Biology, 30 (1971), 235-248.
    [18] Journal of Theoretical Biology, 233 (2005), 245-251.
    [19] American Mathematical Society, 99 (1987).
    [20] Journal of Trends in Microbiology, 9 (2001), 9-10.
    [21] Review of Microbiology, 2 (2004), 1740-1526.
    [22] Plastic & Reconstructive Surgery, 126 (2010), 835-842.
    [23] SIAM Journal, 52 (2010), 221-265.
    [24] S. S. Antman editor, Springer Publisher, 2003.
    [25] S. S. Antman editor, Springer publisher, 2002.
    [26] Journal of Computer Science and Engineering, 11 (2009), 6-15.
    [27] I. N. Herstein and Gian-Carlo Rota editor Harper and Row publisher.
    [28] Spring Street Editor, Plenum Press, New York, 1986.
    [29] Journal of Industrial Microbiology and Biotechnology, 15 (1995), 137-140.
    [30] International Journal of Antimicrobial Agents, 11 (1999), 217-221.
    [31] Sci. Am., 238 (1978), 86-95.
    [32] S. Axler editor, Springer publisher, 2000.
    [33] FEMS Microbiology Letters, 236 (2004), 163-173.
    [34] IMA Journal of Applied Mathematics, (2007).
    [35] Journal of Theoretical Biology, 188 (1997), 177-185.
    [36] Journal of Bacteriology, 184 (2002), 1140-1154.
    [37] Journal of Theoretical Biology, 251 (2008), 24-34.
    [38] Mathematical Biosciences, 158 (1999), 95-126.
    [39] FEMS Immunol. Med. Microbiol, 59 (2010), 324-336.
    [40] Journal of Theoretical Biology, 259 (2012), 23-36.
    [41] Microbial Ecology, 41 (2001), 210-221.
    [42] Physica A: Statistical Mechanics and its Applications, 282 (2000), 283-303.
    [43] Journal of Theoretical Biology, 266 (2010), 275-290.
    [44] Bulletin of Mathematical Biology, 70 (2008), 1570-1607.
    [45] J. William Costerton Editor Springer Publisher, 2008.
    [46] International Journal of Antimicrobial Agents, 35 (2010), 322-332.
    [47] International Journal of Antimicrobial Agents, 35 (2010), 322-332.
    [48] Biotechnology and Bioengineering, 28 (1986), 314-328.
    [49] Journal of Science, 273 (1996), 1795-1797.
    [50] Journal of Bacteriology, 182 (2000), 2675-2679.
    [51] Solid State Communications, 150 (2010), 21-22.
    [52] Journal of Simul., 3 (2005), 362-394.
    [53] Cambridge University Press, 2002.
    [54] Clinical Microbiology Reviews, 15 (2002).
    [55] Environmental Microbiology, 11 (2009), 279-288.
    [56] Journal of Bacteriology, 182 (2000).
    [57] Journal of Bacteriology, 189 (2007), 4223-4233.
    [58] Springer Berlin Heidelberg, 4 (2009), 35-64.
    [59] Last Accessed on June 11, 2012.
  • This article has been cited by:

    1. Tianyu Mao, Fengzhou Fang, Biomimetic Functional Surfaces towards Bactericidal Soft Contact Lenses, 2020, 11, 2072-666X, 835, 10.3390/mi11090835
    2. Yong Chen, Hengtong Wang, Jiangang Zhang, Ke Chen, Yumin Li, Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions, 2016, 5, 2045-2322, 10.1038/srep17992
    3. Mohammad Mahdi Mardanpour, Maryam Saadatmand, Soheila Yaghmaei, Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model, 2019, 128, 15675394, 39, 10.1016/j.bioelechem.2019.03.003
    4. Christa K. Gomez, Srijan Aggarwal, 2019, 9781119300755, 1, 10.1002/9781119300762.wsts0193
    5. B. D’Acunto, L. Frunzo, M. R. Mattei, Continuum approach to mathematical modelling of multispecies biofilms, 2017, 66, 0035-5038, 153, 10.1007/s11587-016-0294-8
    6. Saheli Ghosh, Asifa Qureshi, Hemant J. Purohit, 2017, Chapter 15, 978-981-10-6862-1, 305, 10.1007/978-981-10-6863-8_15
    7. Mohammad Kalantar, Mohammad Mahdi Mardanpour, Soheila Yaghmaei, A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation, 2018, 122, 15675394, 51, 10.1016/j.bioelechem.2018.03.002
    8. Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling, 2017, 227, 00134686, 317, 10.1016/j.electacta.2017.01.041
    9. Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Mohammad Kalantar, Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters, 2017, 342, 03787753, 1017, 10.1016/j.jpowsour.2017.01.012
    10. Adib Mahmoodi Nasrabadi, Mahdi Moghimi, Energy analysis and optimization of a biosensor-based microfluidic microbial fuel cell using both genetic algorithm and neural network PSO, 2022, 47, 03603199, 4854, 10.1016/j.ijhydene.2021.11.125
    11. Roent Dune A. Cayetano, Gi-Beom Kim, Jungsu Park, Yung-Hun Yang, Byong-Hun Jeon, Min Jang, Sang-Hyoun Kim, Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery, 2022, 344, 09608524, 126309, 10.1016/j.biortech.2021.126309
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3104) PDF downloads(679) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog