Citation: Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 821-842. doi: 10.3934/mbe.2013.10.821
[1] | Yousef Rohanizadegan, Stefanie Sonner, Hermann J. Eberl . Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation. Mathematical Biosciences and Engineering, 2020, 17(3): 2236-2271. doi: 10.3934/mbe.2020119 |
[2] | Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier . Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355 |
[3] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[4] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[5] | Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547 |
[6] | Donna J. Cedio-Fengya, John G. Stevens . Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences and Engineering, 2006, 3(4): 615-634. doi: 10.3934/mbe.2006.3.615 |
[7] | Jack M. Hughes, Hermann J. Eberl, Stefanie Sonner . A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs. Mathematical Biosciences and Engineering, 2022, 19(7): 6582-6619. doi: 10.3934/mbe.2022310 |
[8] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[9] | Silogini Thanarajah, Hao Wang . Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399 |
[10] | Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl . Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215 |
[1] | John Wiley and Sons Inc., New York, NY Publisher, 1984. |
[2] | New Scientist, 151 (1996), 32-36. |
[3] | Journal of Theoretical Biology, 289 (2001), 90-95. |
[4] | FEMS Microbiol Review, (2009) 1-19. |
[5] | Biotechnology and Bioengineering, 58 (1997). |
[6] | Journal of Desalination, 250 (2010), 390-394. |
[7] | 2003. |
[8] | SIAM Journal, 62 (2002), 1728-1771. |
[9] | Journal of Environmental Microbiology, 12 (2010), 557-566. |
[10] | Computational Biology and Chemistry, 33 (2009), 269-274. |
[11] | Physical Review E, 66 (2002). |
[12] | Physical Review E, 66 (2002). |
[13] | Nature Journal, 368 (1994), 46-49. |
[14] | Bull. Math. Biol., 68 (2009), 1033-1037. |
[15] | Journal of Theoretical Biology, 26 (1970), 399-415. |
[16] | Journal of Theoretical Biology, 30 (1971), 225-234. |
[17] | Journal of Theoretical Biology, 30 (1971), 235-248. |
[18] | Journal of Theoretical Biology, 233 (2005), 245-251. |
[19] | American Mathematical Society, 99 (1987). |
[20] | Journal of Trends in Microbiology, 9 (2001), 9-10. |
[21] | Review of Microbiology, 2 (2004), 1740-1526. |
[22] | Plastic & Reconstructive Surgery, 126 (2010), 835-842. |
[23] | SIAM Journal, 52 (2010), 221-265. |
[24] | S. S. Antman editor, Springer Publisher, 2003. |
[25] | S. S. Antman editor, Springer publisher, 2002. |
[26] | Journal of Computer Science and Engineering, 11 (2009), 6-15. |
[27] | I. N. Herstein and Gian-Carlo Rota editor Harper and Row publisher. |
[28] | Spring Street Editor, Plenum Press, New York, 1986. |
[29] | Journal of Industrial Microbiology and Biotechnology, 15 (1995), 137-140. |
[30] | International Journal of Antimicrobial Agents, 11 (1999), 217-221. |
[31] | Sci. Am., 238 (1978), 86-95. |
[32] | S. Axler editor, Springer publisher, 2000. |
[33] | FEMS Microbiology Letters, 236 (2004), 163-173. |
[34] | IMA Journal of Applied Mathematics, (2007). |
[35] | Journal of Theoretical Biology, 188 (1997), 177-185. |
[36] | Journal of Bacteriology, 184 (2002), 1140-1154. |
[37] | Journal of Theoretical Biology, 251 (2008), 24-34. |
[38] | Mathematical Biosciences, 158 (1999), 95-126. |
[39] | FEMS Immunol. Med. Microbiol, 59 (2010), 324-336. |
[40] | Journal of Theoretical Biology, 259 (2012), 23-36. |
[41] | Microbial Ecology, 41 (2001), 210-221. |
[42] | Physica A: Statistical Mechanics and its Applications, 282 (2000), 283-303. |
[43] | Journal of Theoretical Biology, 266 (2010), 275-290. |
[44] | Bulletin of Mathematical Biology, 70 (2008), 1570-1607. |
[45] | J. William Costerton Editor Springer Publisher, 2008. |
[46] | International Journal of Antimicrobial Agents, 35 (2010), 322-332. |
[47] | International Journal of Antimicrobial Agents, 35 (2010), 322-332. |
[48] | Biotechnology and Bioengineering, 28 (1986), 314-328. |
[49] | Journal of Science, 273 (1996), 1795-1797. |
[50] | Journal of Bacteriology, 182 (2000), 2675-2679. |
[51] | Solid State Communications, 150 (2010), 21-22. |
[52] | Journal of Simul., 3 (2005), 362-394. |
[53] | Cambridge University Press, 2002. |
[54] | Clinical Microbiology Reviews, 15 (2002). |
[55] | Environmental Microbiology, 11 (2009), 279-288. |
[56] | Journal of Bacteriology, 182 (2000). |
[57] | Journal of Bacteriology, 189 (2007), 4223-4233. |
[58] | Springer Berlin Heidelberg, 4 (2009), 35-64. |
[59] | Last Accessed on June 11, 2012. |
1. | Tianyu Mao, Fengzhou Fang, Biomimetic Functional Surfaces towards Bactericidal Soft Contact Lenses, 2020, 11, 2072-666X, 835, 10.3390/mi11090835 | |
2. | Yong Chen, Hengtong Wang, Jiangang Zhang, Ke Chen, Yumin Li, Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions, 2016, 5, 2045-2322, 10.1038/srep17992 | |
3. | Mohammad Mahdi Mardanpour, Maryam Saadatmand, Soheila Yaghmaei, Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model, 2019, 128, 15675394, 39, 10.1016/j.bioelechem.2019.03.003 | |
4. | Christa K. Gomez, Srijan Aggarwal, 2019, 9781119300755, 1, 10.1002/9781119300762.wsts0193 | |
5. | B. D’Acunto, L. Frunzo, M. R. Mattei, Continuum approach to mathematical modelling of multispecies biofilms, 2017, 66, 0035-5038, 153, 10.1007/s11587-016-0294-8 | |
6. | Saheli Ghosh, Asifa Qureshi, Hemant J. Purohit, 2017, Chapter 15, 978-981-10-6862-1, 305, 10.1007/978-981-10-6863-8_15 | |
7. | Mohammad Kalantar, Mohammad Mahdi Mardanpour, Soheila Yaghmaei, A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation, 2018, 122, 15675394, 51, 10.1016/j.bioelechem.2018.03.002 | |
8. | Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling, 2017, 227, 00134686, 317, 10.1016/j.electacta.2017.01.041 | |
9. | Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Mohammad Kalantar, Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters, 2017, 342, 03787753, 1017, 10.1016/j.jpowsour.2017.01.012 | |
10. | Adib Mahmoodi Nasrabadi, Mahdi Moghimi, Energy analysis and optimization of a biosensor-based microfluidic microbial fuel cell using both genetic algorithm and neural network PSO, 2022, 47, 03603199, 4854, 10.1016/j.ijhydene.2021.11.125 | |
11. | Roent Dune A. Cayetano, Gi-Beom Kim, Jungsu Park, Yung-Hun Yang, Byong-Hun Jeon, Min Jang, Sang-Hyoun Kim, Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery, 2022, 344, 09608524, 126309, 10.1016/j.biortech.2021.126309 |