Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases

  • Received: 01 August 2012 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 37N25, 9008; Secondary: 68R01.

  • The spread of an infectious disease is sensitive to the contact patterns in the population and to precautions people take to reduce the transmission of the disease.We investigate the impact that different mixing assumptions have on the spread an infectious disease in an age-structured ordinary differential equation model. We consider the impact of heterogeneity in susceptibility and infectivity within the population on the disease transmission. We apply the analysis to the spread of a smallpox-like disease, derive the formula for the reproduction number, $\Re_{0}$, and based on this threshold parameter, show the level of human behavioral change required to control the epidemic.We analyze how different mixing patterns can affect the disease prevalence, the cumulative number of new infections, and the final epidemic size.Our analysis indicates that the combination of residual immunity and behavioral changes during a smallpox-like disease outbreak can play a key role in halting infectious disease spread; and that realistic mixing patterns must be included in the epidemic model for the predictions to accurately reflect reality.

    Citation: Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1475-1497. doi: 10.3934/mbe.2013.10.1475

    Related Papers:

    [1] Juan Pablo Aparicio, Carlos Castillo-Chávez . Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209
    [2] Claus Kadelka . Projecting social contact matrices to populations stratified by binary attributes with known homophily. Mathematical Biosciences and Engineering, 2023, 20(2): 3282-3300. doi: 10.3934/mbe.2023154
    [3] Abdelkarim Lamghari, Dramane Sam Idris Kanté, Aissam Jebrane, Abdelilah Hakim . Modeling the impact of distancing measures on infectious disease spread: a case study of COVID-19 in the Moroccan population. Mathematical Biosciences and Engineering, 2024, 21(3): 4370-4396. doi: 10.3934/mbe.2024193
    [4] Avery Meiksin . Using the SEIR model to constrain the role of contaminated fomites in spreading an epidemic: An application to COVID-19 in the UK. Mathematical Biosciences and Engineering, 2022, 19(4): 3564-3590. doi: 10.3934/mbe.2022164
    [5] Yong Li, Meng Huang, Li Peng . A multi-group model for estimating the transmission rate of hand, foot and mouth disease in mainland China. Mathematical Biosciences and Engineering, 2019, 16(4): 2305-2321. doi: 10.3934/mbe.2019115
    [6] Maoxing Liu, Shushu He, Yongzheng Sun . The impact of media converge on complex networks on disease transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6335-6349. doi: 10.3934/mbe.2019316
    [7] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez . The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753
    [8] Haonan Zhong, Wendi Wang . Mathematical analysis for COVID-19 resurgence in the contaminated environment. Mathematical Biosciences and Engineering, 2020, 17(6): 6909-6927. doi: 10.3934/mbe.2020357
    [9] Mattia Zanella, Chiara Bardelli, Mara Azzi, Silvia Deandrea, Pietro Perotti, Santino Silva, Ennio Cadum, Silvia Figini, Giuseppe Toscani . Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection. Mathematical Biosciences and Engineering, 2021, 18(4): 3384-3403. doi: 10.3934/mbe.2021169
    [10] Xiaomeng Wang, Xue Wang, Xinzhu Guan, Yun Xu, Kangwei Xu, Qiang Gao, Rong Cai, Yongli Cai . The impact of ambient air pollution on an influenza model with partial immunity and vaccination. Mathematical Biosciences and Engineering, 2023, 20(6): 10284-10303. doi: 10.3934/mbe.2023451
  • The spread of an infectious disease is sensitive to the contact patterns in the population and to precautions people take to reduce the transmission of the disease.We investigate the impact that different mixing assumptions have on the spread an infectious disease in an age-structured ordinary differential equation model. We consider the impact of heterogeneity in susceptibility and infectivity within the population on the disease transmission. We apply the analysis to the spread of a smallpox-like disease, derive the formula for the reproduction number, $\Re_{0}$, and based on this threshold parameter, show the level of human behavioral change required to control the epidemic.We analyze how different mixing patterns can affect the disease prevalence, the cumulative number of new infections, and the final epidemic size.Our analysis indicates that the combination of residual immunity and behavioral changes during a smallpox-like disease outbreak can play a key role in halting infectious disease spread; and that realistic mixing patterns must be included in the epidemic model for the predictions to accurately reflect reality.


    [1] Oxford Science Publications, Oxford University Press, USA, 1992.
    [2] Japan Journal of Infectious Diseases, 55 (2002), 112-116.
    [3] Scientific American, 292 (2005), 54-61.
    [4] Mathematical Biosciences, 96 (1989), 221-238.
    [5] The New England Journal of Medicine, 348 (2003), 416-425.
    [6] IMA J. Math. Appl. Med. Biol., 8 (1991), 1-29.
    [7] (2004). Available from: http://www.bt.cdc.gov/agent/smallpox/vaccination/clineval/ [Online; accessed 19-July-2011].
    [8] $17^th$ edition, American Public Health Association, Washington, D. C., 2002.
    [9] (2004). Available from: http://math.lanl.gov/~mac/dsdisp/ [Online; accessed 19-January-2012].
    [10] Emerging Infectious Diseases, 10 (2004), 1-8.
    [11] Mathematical Biosciences, 195 (2005), 228-251.
    [12] Social Networks, 29 (2007), 539-554.
    [13] American Journal of Epidemiology, 158 (2003), 717-723.
    [14] American Journal of Epidemiology, 158 (2003), 110-117.
    [15] Nature, 429 (2004), 180-184.
    [16] Social Networks, 5 (1983), 1-11.
    [17] PNAS, 108 (2011), 6306-6311.
    [18] World Health Organization Geneva, Switzerland, (1988).
    [19] Nature, 425 (2003), 681-685.
    [20] Nature, 414 (2001), 748-751.
    [21] Mathematical Biosciences, 235 (2012), 1-7.
    [22] Mathematical Biosciences, 128 (1995), 41-55.
    [23] Science, 298 (2002), 1428-1430.
    [24] Mathematical Biosciences, 84 (1987), 85-118.
    [25] Lecture Notes in Biomathematics, 56, Springer-Verlag, New York, 1984.
    [26] in "World Congress of Nonlinear Analysts '92: Proceedings of the First World Congress of Nonlinear Analysts" (ed. V. Lakshmikantham), Walter de Gruyter & Co., (1995), 3137-3148.
    [27] Applied Numerical Mathematics, 24 (1997), 379-392.
    [28] SIAM Journal on Applied Mathematics, 57 (1997), 1082-1094.
    [29] Mathematical Biosciences, 155 (1999), 77-109.
    [30] Mathematical Biosciences, 90 (1988), 415-473.
    [31] in "Mathematical Approaches to Problems in Resource Management and Epidemiology" (eds. C. Castillo-Chavez, S. A. Levin and C. A. Shoemaker), Lecture Notes in Biomathematics, 81, Springer, Berlin, (1989), 190-219.
    [32] University of Chicago Press, 1983.
    [33] Journal of Laboratory and Clinical Medicine, 142 (2003), 221-228.
    [34] Mathematical Biosciences, 92 (1988), 119-199.
    [35] in "Mathematical and Statistical Approaches to AIDS Epidemiology" (ed. C. Castillo-Chavez), Lecture Notes in Biomath., 83, Springer, New York, (1989), 218-239.
    [36] Proceedings of the National Academy of Sciences, 99 (2002), 10935-10940.
    [37] Journal of Mathematical Biology, 48 (2004), 423-443.
    [38] in "Mathematical and Statistical Approaches to AIDS Epidemiology" (ed. C. Castillo-Chavez), Lecture Notes in Biomathematics, 83, Springer, Berlin, (1989), 316-348.
    [39] Mathematical Biosciences, 133 (1996), 165-195.
    [40] in "Modeling the AIDS Epidemic: Planning, Policy, and Prediction" (eds. E.H. Kaplan and M.L. Brandeau), Raven Press, New York, (1994), 561-583.
    [41] EID, 10 (2004), 832-841.
    [42] The Journal of Infectious Diseases, 125 (1972), 161-169.
    [43] PLoS Pathogens, 6 (2010), e1000745.
    [44] Emerging Infectious Diseases, 7 (2001), 959-969.
    [45] Journal of Epidemiology, 14 (2004), 41-50.
    [46] Mathematical Biosciences, 52 (1980), 227-240.
    [47] Emerging Infectious Diseases, 10 (2004), 587-592.
    [48] JAMA, 290 (2003), 3215-3221.
    [49] Indian Journal of Medical Research, 56 (1968), 1826-1854.
    [50] in "The Small World" (ed. M. Kochen), Ablex, Norwood, NJ, (1989), 327-348.
    [51] World Health Organization, Geneva, (1969).
    [52] Mathematical Biosciences, 203 (2006), 301-318.
    [53] Journal of Artificial Societies and Social Simulation, 10 (2007).
    [54] Mathematical Biosciences, 180 (2002), 29-48.
    [55] Journal of Mathematical Biology, 32 (1994), 233-249.
    [56] Pediatric Infectious Disease Journal, 24 (2005), S58-S61.
    [57] Health Care Management Science, 5 (2002), 147-155.
  • This article has been cited by:

    1. Kasia A. Pawelek, Sarah Tobin, Christopher Griffin, Dominik Ochocinski, Elissa J. Schwartz, Sara Del Valle, Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza, 2017, 4, 2375-1576, 217, 10.3934/medsci.2017.2.217
    2. Philip E. Hulme, Richard Baker, Robert Freckleton, Rosemary S. Hails, Matt Hartley, John Harwood, Glenn Marion, Graham C. Smith, Mark Williamson, The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats, 2020, 62, 1314-2488, 161, 10.3897/neobiota.62.52463
    3. Jonatan Almagor, Stefano Picascia, Exploring the effectiveness of a COVID-19 contact tracing app using an agent-based model, 2020, 10, 2045-2322, 10.1038/s41598-020-79000-y
    4. Milen Borisov, Svetoslav Markov, The two-step exponential decay reaction network: analysis of the solutions and relation to epidemiological SIR models with logistic and Gompertz type infection contact patterns, 2021, 0259-9791, 10.1007/s10910-021-01240-8
    5. C. Raina MacIntyre, Valentina Costantino, Xin Chen, Eva Segelov, Abrar Ahmad Chughtai, Anthony Kelleher, Mohana Kunasekaran, John Michael Lane, Influence of Population Immunosuppression and Past Vaccination on Smallpox Reemergence, 2018, 24, 1080-6040, 646, 10.3201/eid2404.171233
    6. Wiriya Mahikul, Somkid Kripattanapong, Piya Hanvoravongchai, Aronrag Meeyai, Sopon Iamsirithaworn, Prasert Auewarakul, Wirichada Pan-ngum, Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand, 2020, 17, 1660-4601, 2237, 10.3390/ijerph17072237
    7. Gabriel Andreguetto Maciel, Renato Mendes Coutinho, Roberto André Kraenkel, Critical patch-size for two-sex populations, 2018, 300, 00255564, 138, 10.1016/j.mbs.2018.03.028
    8. Qiuyan Liao, Benjamin J. Cowling, Peng Wu, Gabriel M. Leung, Richard Fielding, Wendy Wing Tak Lam, Population Behavior Patterns in Response to the Risk of Influenza A(H7N9) in Hong Kong, December 2013–February 2014, 2015, 22, 1070-5503, 672, 10.1007/s12529-015-9465-3
    9. Hiromi Seno, An SIS model for the epidemic dynamics with two phases of the human day-to-day activity, 2020, 80, 0303-6812, 2109, 10.1007/s00285-020-01491-0
    10. Frederik Verelst, Lander Willem, Philippe Beutels, Behavioural change models for infectious disease transmission: a systematic review (2010–2015), 2016, 13, 1742-5689, 20160820, 10.1098/rsif.2016.0820
    11. Abba B. Gumel, Enahoro A. Iboi, Calistus N. Ngonghala, Elamin H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, 2021, 6, 24680427, 148, 10.1016/j.idm.2020.11.005
    12. Abraham J. Arenas, Gilberto González-Parra, Nicolás De La Espriella, Nonlinear dynamics of a new seasonal epidemiological model with age-structure and nonlinear incidence rate, 2021, 40, 2238-3603, 10.1007/s40314-021-01430-9
    13. Asma Azizi, Ling Xue, James M. Hyman, 2016, Chapter 15, 978-3-319-40411-0, 249, 10.1007/978-3-319-40413-4_15
    14. Dilara Acarali, Muttukrishnan Rajarajan, Nikos Komninos, 2018, Modelling Botnet Propagation in Networks with Layered Defences, 978-1-5386-3779-1, 1, 10.1109/ISNCC.2018.8530934
    15. Valentina Costantino, Mohana P Kunasekaran, Abrar A Chughtai, Chandini R MacIntyre, How Valid Are Assumptions About Re-emerging Smallpox? A Systematic Review of Parameters Used in Smallpox Mathematical Models, 2018, 183, 0026-4075, e200, 10.1093/milmed/usx092
    16. Ahmed Salem ElArbi, Yaghouba Kane, Raphaelle Metras, Pachka Hammami, Mamadou Ciss, Assane Beye, Renaud Lancelot, Adama Diallo, Andrea Apolloni, PPR Control in a Sahelian Setting: What Vaccination Strategy for Mauritania?, 2019, 6, 2297-1769, 10.3389/fvets.2019.00242
    17. Stephanie Brinkhues, Miranda T. Schram, Christian J. P. A. Hoebe, Mirjam E. E. Kretzschmar, Annemarie Koster, Pieter C. Dagnelie, Simone J. S. Sep, Sander M. J. van Kuijk, Paul H. M. Savelkoul, Nicole H. T. M. Dukers-Muijrers, Social networks in relation to self-reported symptomatic infections in individuals aged 40–75 - the Maastricht study –, 2018, 18, 1471-2334, 10.1186/s12879-018-3197-3
    18. Junyuan Yang, Chairat Modnak, Jin Wang, Dynamical analysis and optimal control simulation for an age-structured cholera transmission model, 2019, 356, 00160032, 8438, 10.1016/j.jfranklin.2019.08.016
    19. Daniel Goldman, Voluntary Cyclical Distancing: A Potential Alternative to Constant Level Mandatory Social Distancing, Relying on an “Infection Weather Report”, 2020, 8, 2296-2565, 10.3389/fpubh.2020.559930
    20. Kai Wang, Bryan Wilder, Sze-chuan Suen, Bistra Dilkina, Milind Tambe, 2020, Chapter 44, 978-3-030-43822-7, 555, 10.1007/978-3-030-43823-4_44
    21. Keisuke Kondo, Simulating the impacts of interregional mobility restriction on the spatial spread of COVID-19 in Japan, 2021, 11, 2045-2322, 10.1038/s41598-021-97170-1
    22. Muhammad Aneeq Uz Zaman, Sujay Bhatt, Tamer Basar, 2021, Adversarial Linear-Quadratic Mean-Field Games over Multigraphs, 978-1-6654-3659-5, 209, 10.1109/CDC45484.2021.9682820
    23. Khalil Al Handawi, Michael Kokkolaras, Optimization of Infectious Disease Prevention and Control Policies Using Artificial Life, 2022, 6, 2471-285X, 26, 10.1109/TETCI.2021.3107496
    24. Aharona Glatman-Freedman, Sarah F Feldman, Yael Hershkovitz, Zalman Kaufman, Rita Dichtiar, Lital Keinan-Boker, Michal Bromberg, Vaccine Coverage Associated With Ending a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Wave: A Retrospective Longitudinal Analysis, 2023, 76, 1058-4838, e207, 10.1093/cid/ciac524
    25. Prateek Kunwar, Oleksandr Markovichenko, Monique Chyba, Yuriy Mileyko, Alice Koniges, Thomas Lee, A study of computational and conceptual complexities of compartment and agent based models, 2022, 17, 1556-1801, 359, 10.3934/nhm.2022011
    26. Shannon Connolly, David Gilbert, Monika Heiner, From Epidemic to Pandemic Modelling, 2022, 2, 2674-0702, 10.3389/fsysb.2022.861562
    27. Alexander Chudik, M. Hashem Pesaran, Alessandro Rebucci, Social Distancing, Vaccination and Evolution of COVID-19 Transmission Rates in Europe, 2022, 2041-4161, 10.1057/s41308-022-00181-9
    28. Ricardo L. Dizon, 2022, Chapter 25, 978-3-030-72833-5, 859, 10.1007/978-3-030-72834-2_25
    29. Prem Rajendra Warde, Samira S Patel, Tanira D Ferreira, Hayley B Gershengorn, Monisha C Bhatia, Dipen J Parekh, Kymberlee J Manni, Bhavarth S Shukla, Linking prediction models to government ordinances to support hospital operations during the COVID-19 pandemic, 2021, 28, 2632-1009, e100248, 10.1136/bmjhci-2020-100248
    30. Edwin van Leeuwen, Frank Sandmann, Augmenting contact matrices with time-use data for fine-grained intervention modelling of disease dynamics: A modelling analysis, 2022, 31, 0962-2802, 1704, 10.1177/09622802211037078
    31. Daifeng Duan, Cuiping Wang, Yuan Yuan, Dynamical analysis in disease transmission and final epidemic size, 2023, 22, 1534-0392, 343, 10.3934/cpaa.2021150
    32. Bo Zheng, Wenlong Zhu, Jinhua Pan, Weibing Wang, Patterns of human social contact and mask wearing in high-risk groups in China, 2022, 11, 2049-9957, 10.1186/s40249-022-00988-8
    33. Ankur Singh Bist, Bhupesh Rawat, Qurotul Aini, Ninda Lutfiani, Marviola Hardini, 2021, COVID-19 Wave Pattern Analysis: An Exhaustive Survey, 978-1-6654-3548-2, 1, 10.1109/CITSM52892.2021.9588885
    34. Chao Liu, Peng Chen, Qiyu Jia, Lora Cheung, Effects of Media Coverage on Global Stability Analysis and Optimal Control of an Age-Structured Epidemic Model with Multi-Staged Progression, 2022, 10, 2227-7390, 2712, 10.3390/math10152712
    35. Constantino Caetano, Maria Luísa Morgado, Paula Patrício, João F. Pereira, Baltazar Nunes, Mathematical Modelling of the Impact of Non-Pharmacological Strategies to Control the COVID-19 Epidemic in Portugal, 2021, 9, 2227-7390, 1084, 10.3390/math9101084
    36. Bastien Reyné, Quentin Richard, Christian Selinger, Mircea T. Sofonea, Ramsès Djidjou-Demasse, Samuel Alizon, Jacek Banasiak, Non-Markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamics, 2022, 17, 0973-5348, 7, 10.1051/mmnp/2022008
    37. Richard A. Stein, 2022, Chapter 16, 978-3-030-96813-7, 347, 10.1007/978-3-030-96814-4_16
    38. Seyyed-Mahdi Hosseini-Motlagh, Mohammad Reza Ghatreh Samani, Shamim Homaei, Design of control strategies to help prevent the spread of COVID-19 pandemic, 2023, 304, 03772217, 219, 10.1016/j.ejor.2021.11.016
    39. M. Hashem Pesaran, Cynthia Fan Yang, Matching theory and evidence on Covid‐19 using a stochastic network SIR model, 2022, 37, 0883-7252, 1204, 10.1002/jae.2904
    40. Dilara Acarali, K. Rajesh Rao, Muttukrishnan Rajarajan, Doron Chema, Mark Ginzburg, Modelling smart grid IT-OT dependencies for DDoS impact propagation, 2022, 112, 01674048, 102528, 10.1016/j.cose.2021.102528
    41. Setianto Setianto, Darmawan Hidayat, Modeling the time-dependent transmission rate using gaussian pulses for analyzing the COVID-19 outbreaks in the world, 2023, 13, 2045-2322, 10.1038/s41598-023-31714-5
    42. Klara M. Wanelik, Mike Begon, Andy Fenton, Rachel A. Norman, Pablo M. Beldomenico, Positive feedback loops exacerbate the influence of superspreaders in disease transmission, 2023, 26, 25890042, 106618, 10.1016/j.isci.2023.106618
    43. Audrey M. Dorélien, Narmada Venkateswaran, Jiuchen Deng, Kelly Searle, Eva Enns, Giovann Alarcon Espinoza, Shalini Kulasingam, Quantifying social contact patterns in Minnesota during stay-at-home social distancing order, 2023, 23, 1471-2334, 10.1186/s12879-022-07968-1
    44. SHUANGSHUANG LIANG, SHENGFU WANG, LIN HU, LIN-FEI NIE, GLOBAL DYNAMICS AND OPTIMAL CONTROL FOR A VECTOR-BORNE EPIDEMIC MODEL WITH MULTI-CLASS-AGE STRUCTURE AND HORIZONTAL TRANSMISSION, 2023, 31, 0218-3390, 375, 10.1142/S0218339023500109
    45. Sargun Nagpal, Rakesh Kumar, Riz Fernando Noronha, Supriya Kumar, Debayan Gupta, Ritvik Amarchand, Mudita Gosain, Hanspria Sharma, Gautam I. Menon, Anand Krishnan, Alberto Aleta, Seasonal variations in social contact patterns in a rural population in north India: Implications for pandemic control, 2024, 19, 1932-6203, e0296483, 10.1371/journal.pone.0296483
    46. Ann Osi, Navid Ghaffarzadegan, Claudio José Struchiner, Parameter estimation in behavioral epidemic models with endogenous societal risk-response, 2024, 20, 1553-7358, e1011992, 10.1371/journal.pcbi.1011992
    47. Dung T. Nguyen, Nguyen H. Du, Son L. Nguyen, Asymptotic behavior for a stochastic behavioral change SIR model, 2024, 0022247X, 128361, 10.1016/j.jmaa.2024.128361
    48. Ji Li, Yue Li, Zihan Mei, Zhengkun Liu, Gaofeng Zou, Chunxia Cao, Mathematical models and analysis tools for risk assessment of unnatural epidemics: Our review is a scoping review, 2024, 12, 2296-2565, 10.3389/fpubh.2024.1381328
    49. Tarini Sudhakar, Ashna Bhansali, John Walkington, David Puelz, The disutility of compartmental model forecasts during the COVID-19 pandemic, 2024, 4, 2674-1199, 10.3389/fepid.2024.1389617
    50. Caleb Sullivan, Pubudu Senanayake, Michael J. Plank, Quantifying age-specific household contacts in Aotearoa New Zealand for infectious disease modelling, 2024, 11, 2054-5703, 10.1098/rsos.240550
    51. Riccardo Quaranta, Gian Marco Ludovici, Luca Romano, Guglielmo Manenti, Andrea Malizia, Testing and results of an open-source radiation epidemiology model using the Goiânia accident, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05647-5
    52. Riccardo Quaranta, Gian Marco Ludovici, Luca Romano, Guglielmo Manenti, Andrea Malizia, A rapid radiation epidemiology tool for the analysis of the propagation of radiation following a radiological dispersal device explosion, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05905-6
    53. Luca Dede’, Nicola Parolini, Alfio Quarteroni, Giulia Villani, Giovanni Ziarelli, A Multi-Age Multi-Group Epidemiological Model and Its Validation on the COVID-19 Epidemic in Italy: SEIHRDV, 2025, 13, 2227-7390, 788, 10.3390/math13050788
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2374) PDF downloads(530) Cited by(53)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog