Typesetting math: 100%

Mathematical modelling of tuberculosis epidemics

  • Received: 01 February 2008 Accepted: 29 June 2018 Published: 01 March 2009
  • MSC : Primary: 92D25, 92D30; Secondary: 92C60.

  • The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.

    Citation: Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics[J]. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209

    Related Papers:

    [1] Carlos Castillo-Chavez, Baojun Song . Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361
    [2] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [3] P. van den Driessche, Lin Wang, Xingfu Zou . Modeling diseases with latency and relapse. Mathematical Biosciences and Engineering, 2007, 4(2): 205-219. doi: 10.3934/mbe.2007.4.205
    [4] Tao-Li Kang, Hai-Feng Huo, Hong Xiang . Dynamics and optimal control of tuberculosis model with the combined effects of vaccination, treatment and contaminated environments. Mathematical Biosciences and Engineering, 2024, 21(4): 5308-5334. doi: 10.3934/mbe.2024234
    [5] Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81
    [6] Xunyang Wang, Canyun Huang, Yixin Hao, Qihong Shi . A stochastic mathematical model of two different infectious epidemic under vertical transmission. Mathematical Biosciences and Engineering, 2022, 19(3): 2179-2192. doi: 10.3934/mbe.2022101
    [7] Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero . Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences and Engineering, 2018, 15(2): 407-428. doi: 10.3934/mbe.2018018
    [8] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [9] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
    [10] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
  • The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.


  • This article has been cited by:

    1. Julien Arino, Iman A. Soliman, 2015, 9781118853887, 99, 10.1002/9781118853887.ch5
    2. James M. Trauer, Justin T. Denholm, Emma S. McBryde, Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-pacific, 2014, 358, 00225193, 74, 10.1016/j.jtbi.2014.05.023
    3. Marilyn Ronoh, Rym Jaroudi, Patrick Fotso, Victor Kamdoum, Nancy Matendechere, Josephine Wairimu, Rose Auma, Jonnes Lugoye, A Mathematical Model of Tuberculosis with Drug Resistance Effects, 2016, 07, 2152-7385, 1303, 10.4236/am.2016.712115
    4. Milen Borisov, Svetoslav Markov, The two-step exponential decay reaction network: analysis of the solutions and relation to epidemiological SIR models with logistic and Gompertz type infection contact patterns, 2021, 0259-9791, 10.1007/s10910-021-01240-8
    5. Cagri Ozcaglar, Amina Shabbeer, Scott L. Vandenberg, Bülent Yener, Kristin P. Bennett, Epidemiological models of Mycobacterium tuberculosis complex infections, 2012, 236, 00255564, 77, 10.1016/j.mbs.2012.02.003
    6. N. H. Sweilam, S. M. AL-Mekhlafi, On the optimal control for fractional multi-strain TB model, 2016, 37, 01432087, 1355, 10.1002/oca.2247
    7. Swati DebRoy, Olivia Prosper, Austin Mishoe, Anuj Mubayi, Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings, 2017, 14, 1742-7622, 10.1186/s12982-017-0065-3
    8. Siyu Liu, Yingjie Bi, Yawen Liu, Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control, 2020, 17, 1742-4682, 10.1186/s12976-020-00124-9
    9. A. O. Egonmwan, D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, 2019, 59, 1598-5865, 129, 10.1007/s12190-018-1172-1
    10. EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER, MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE, 2010, 52, 1446-1811, 26, 10.1017/S1446181111000587
    11. Stefan Panaiotov, Massimo Amicosante, Dynamics of the laboratory results in patients with pulmonary tuberculosis, 2010, 67, 07328893, 327, 10.1016/j.diagmicrobio.2010.03.002
    12. Matt Begun, Anthony T. Newall, Guy B. Marks, James G. Wood, Michael George Roberts, Contact Tracing of Tuberculosis: A Systematic Review of Transmission Modelling Studies, 2013, 8, 1932-6203, e72470, 10.1371/journal.pone.0072470
    13. Nasser H. Sweilam, Seham M. AL-Mekhlafi, Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives, 2016, 7, 20901232, 271, 10.1016/j.jare.2015.06.004
    14. Daniel Okuonghae, Bernard O. Ikhimwin, Dynamics of a Mathematical Model for Tuberculosis with Variability in Susceptibility and Disease Progressions Due to Difference in Awareness Level, 2016, 6, 1664-302X, 10.3389/fmicb.2015.01530
    15. C. S. Pepperell, J. M. Granka, D. C. Alexander, M. A. Behr, L. Chui, J. Gordon, J. L. Guthrie, F. B. Jamieson, D. Langlois-Klassen, R. Long, D. Nguyen, W. Wobeser, M. W. Feldman, Dispersal of Mycobacterium tuberculosis via the Canadian fur trade, 2011, 108, 0027-8424, 6526, 10.1073/pnas.1016708108
    16. Mauricio Herrera, Paul Bosch, Manuel Nájera, Ximena Aguilera, Modeling the Spread of Tuberculosis in Semiclosed Communities, 2013, 2013, 1748-670X, 1, 10.1155/2013/648291
    17. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    18. Romain Ragonnet, James M. Trauer, Nick Scott, Michael T. Meehan, Justin T. Denholm, Emma S. McBryde, Optimally capturing latency dynamics in models of tuberculosis transmission, 2017, 21, 17554365, 39, 10.1016/j.epidem.2017.06.002
    19. Utami Dyah Purwati, Firman Riyudha, Hengki Tasman, Optimal control of a discrete age-structured model for tuberculosis transmission, 2020, 6, 24058440, e03030, 10.1016/j.heliyon.2019.e03030
    20. Fred Brauer, Yanyu Xiao, Seyed M. Moghadas, Drug resistance in an age-of-infection model, 2017, 24, 0889-8480, 64, 10.1080/08898480.2015.1054216
    21. Sungim Whang, Sunhwa Choi, Eunok Jung, A dynamic model for tuberculosis transmission and optimal treatment strategies in South Korea, 2011, 279, 00225193, 120, 10.1016/j.jtbi.2011.03.009
    22. RUI XU, NING BAI, XIAOHONG TIAN, GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION, 2019, 27, 0218-3390, 503, 10.1142/S0218339019500207
    23. Rui Xu, Junyuan Yang, Xiaohong Tian, Jiazhe Lin, Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection, 2019, 13, 1751-3758, 675, 10.1080/17513758.2019.1683628
    24. Soyoung Kim, Aurelio A. de los Reyes, Eunok Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, 2018, 443, 00225193, 100, 10.1016/j.jtbi.2018.01.026
    25. Ayinla Ally Yeketi, Wan Ainun Mior Othman, M. A. Omar Awang, The role of vaccination in curbing tuberculosis epidemic, 2019, 5, 2363-6203, 1689, 10.1007/s40808-019-00623-w
    26. Yayehirad A. Melsew, Adeshina I. Adekunle, Allen C. Cheng, Emma S. McBryde, Romain Ragonnet, James M. Trauer, Heterogeneous infectiousness in mathematical models of tuberculosis: A systematic review, 2020, 30, 17554365, 100374, 10.1016/j.epidem.2019.100374
    27. Sunhwa Choi, Eunok Jung, Optimal Tuberculosis Prevention and Control Strategy from a Mathematical Model Based on Real Data, 2014, 76, 0092-8240, 1566, 10.1007/s11538-014-9962-6
    28. N.H. Sweilam, I.A. Soliman, S.M. Al-Mekhlafi, Nonstandard finite difference method for solving the multi-strain TB model, 2017, 25, 1110256X, 129, 10.1016/j.joems.2016.10.004
    29. D Lestari, A Dhoruri, E R Sari, An epidemic model of tuberculosis with vaccine control in Yogyakarta region Indonesia, 2018, 1132, 1742-6588, 012022, 10.1088/1742-6596/1132/1/012022
    30. Marcin Choiński, Mariusz Bodzioch, Urszula Foryś, Simple criss-cross model of epidemic for heterogeneous populations, 2019, 79, 10075704, 104920, 10.1016/j.cnsns.2019.104920
    31. Dongxue Yan, Hui Cao, The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate, 2019, 75, 0307904X, 769, 10.1016/j.apm.2019.07.003
    32. Nasser H. Sweilam, Seham M. AL-Mekhlafi, Nonstandard theta Milstein method for solving stochastic multi-strain tuberculosis model, 2020, 28, 2090-9128, 10.1186/s42787-020-00073-9
    33. Muhammad Rifki Taufik, Dwi Lestari, Tri Wijayanti Septiarini, Mathematical Model for Vaccinated Tuberculosis Disease with VEIT Model, 2015, 5, 20103697, 192, 10.7763/IJMO.2015.V5.460
    34. Henri Dabernat, Catherine Thèves, Caroline Bouakaze, Dariya Nikolaeva, Christine Keyser, Igor Mokrousov, Annie Géraut, Sylvie Duchesne, Patrice Gérard, Anatoly N. Alexeev, Eric Crubézy, Bertrand Ludes, David Caramelli, Tuberculosis Epidemiology and Selection in an Autochthonous Siberian Population from the 16th-19th Century, 2014, 9, 1932-6203, e89877, 10.1371/journal.pone.0089877
    35. Joao Sollari Lopes, Paula Rodrigues, Suani TR Pinho, Roberto FS Andrade, Raquel Duarte, M Gabriela M Gomes, Interpreting measures of tuberculosis transmission: a case study on the Portuguese population, 2014, 14, 1471-2334, 10.1186/1471-2334-14-340
    36. Ihsan Ullah, Saeed Ahmad, Qasem Al-Mdallal, Zareen A. Khan, Hasib Khan, Aziz Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, 2020, 2020, 1687-1847, 10.1186/s13662-020-02950-0
    37. Sarah F. Ackley, Fengchen Liu, Travis C. Porco, Caitlin S. Pepperell, Modeling historical tuberculosis epidemics among Canadian First Nations: effects of malnutrition and genetic variation, 2015, 3, 2167-8359, e1237, 10.7717/peerj.1237
    38. Hossein Kheiri, Baojun Song, Fereshteh Nazari, Carlos Castillo-Chavez, Azizeh Jabbari, A two-strain TB model with multiple latent stages, 2016, 13, 1551-0018, 741, 10.3934/mbe.2016017
    39. D Lestari, E R Sari, H Arifah, Dynamics of a mathematical model of cancer cells with chemotherapy, 2019, 1320, 1742-6588, 012026, 10.1088/1742-6596/1320/1/012026
    40. Yuexia Zhang, Ziyang Chen, Lie Zou, Wei Wang, Public Opinion Communication Model under the Control of Official Information, 2021, 2021, 1099-0526, 1, 10.1155/2021/8862226
    41. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 7, 978-1-4939-9826-5, 249, 10.1007/978-1-4939-9828-9_7
    42. Mixed vaccination strategy for the control of tuberculosis: A case study in China, 2017, 14, 1551-0018, 695, 10.3934/mbe.2017039
    43. Pierre Nouvellet, Zulma M. Cucunubá, Sébastien Gourbière, 2015, 87, 9780128032565, 135, 10.1016/bs.apar.2014.12.004
    44. Nello Blaser, Cindy Zahnd, Sabine Hermans, Luisa Salazar-Vizcaya, Janne Estill, Carl Morrow, Matthias Egger, Olivia Keiser, Robin Wood, Tuberculosis in Cape Town: An age-structured transmission model, 2016, 14, 17554365, 54, 10.1016/j.epidem.2015.10.001
    45. Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, 2017, 2017, 1687-1847, 10.1186/s13662-017-1294-z
    46. M. Maliyoni, P. M. M. Mwamtobe, S. D. Hove-Musekwa, J. M. Tchuenche, Modelling the Role of Diagnosis, Treatment, and Health Education on Multidrug-Resistant Tuberculosis Dynamics, 2012, 2012, 2090-7702, 1, 10.5402/2012/459829
    47. Sunmi Lee, Hae-Young Park, Hohyung Ryu, Jin-Won Kwon, Age-Specific Mathematical Model for Tuberculosis Transmission Dynamics in South Korea, 2021, 9, 2227-7390, 804, 10.3390/math9080804
    48. Murtantina Dyahayu Mawarni, Dwi Lestari, 2022, 2575, 0094-243X, 030002, 10.1063/5.0108518
    49. Signe Møgelmose, Karel Neels, Niel Hens, Incorporating human dynamic populations in models of infectious disease transmission: a systematic review, 2022, 22, 1471-2334, 10.1186/s12879-022-07842-0
    50. Hoang Pham, A Dynamic Model of Multiple Time-Delay Interactions between the Virus-Infected Cells and Body’s Immune System with Autoimmune Diseases, 2021, 10, 2075-1680, 216, 10.3390/axioms10030216
    51. María del Valle Rafo, Juan Pablo Di Mauro, Juan Pablo Aparicio, Disease dynamics and mean field models for clustered networks, 2021, 526, 00225193, 110554, 10.1016/j.jtbi.2020.110554
    52. Hoang Pham, Mathematical Modeling the Time-Delay Interactions between Tumor Viruses and the Immune System with the Effects of Chemotherapy and Autoimmune Diseases, 2022, 10, 2227-7390, 756, 10.3390/math10050756
    53. Ihsan Ullah, Saeed Ahmad, Mostafa Zahri, Investigation of the effect of awareness and treatment on Tuberculosis infection via a novel epidemic model, 2023, 68, 11100168, 127, 10.1016/j.aej.2022.12.061
    54. Simeon Adeyemo, Adekunle Sangotola, Olga Korosteleva, Modeling Transmission Dynamics of Tuberculosis–HIV Co-Infection in South Africa, 2023, 4, 2673-3986, 408, 10.3390/epidemiologia4040036
    55. Erick Mutwiri Kirimi, Grace Gakii Muthuri, Cyrus Gitonga Ngari, Stephen Karanja, Anibal Coronel, A Model for the Propagation and Control of Pulmonary Tuberculosis Disease in Kenya, 2024, 2024, 1607-887X, 1, 10.1155/2024/5883142
    56. Jinfeng Yin, Guangxuan Yan, Liyi Qin, Chendi Zhu, Jun Fan, Yuwei Li, Junnan Jia, Zhaojun Wu, Hui Jiang, Muhammad Tahir Khan, Jiangdong Wu, Naihui Chu, Howard E. Takiff, Qian Gao, Shibing Qin, Qingyun Liu, Weimin Li, Genomic investigation of bone tuberculosis highlighted the role of subclinical pulmonary tuberculosis in transmission, 2024, 14729792, 102534, 10.1016/j.tube.2024.102534
    57. Jiaxuan Ding, Lei Shi, Ziang Chen, Liping Wang, A novel pulmonary tuberculosis infectious disease model with piecewise periodic transmission rate for epidemic analysis in Zhejiang province, China, 2024, 0924-090X, 10.1007/s11071-024-10596-w
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4746) PDF downloads(964) Cited by(57)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog