Loading [Contrib]/a11y/accessibility-menu.js

Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies

  • Received: 01 October 2010 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 92C55, 92C10; Secondary: 93C70.

  • Bursts of 2.5mm horizontal sinusoidal anterior-posterior oscillations of sequentially varying frequencies (0.25 to 1.25 Hz) are applied to the base of support to study postural control. The Empirical Mode Decomposition (EMD) algorithm decomposes the Center of Pressure (CoP) data (5 young, 4 mature adults) into Intrinsic Mode Functions (IMFs). Hilbert transforms are applied to produce each IMF’s time-frequency spectrum. The most dominant mode in total energy indicates a sway ramble with a frequency content below 0.1 Hz. Other modes illustrate that the stimulus frequencies produce a ‘locked-in’ behavior of CoP with platform position signal. The combined Hilbert Spectrum of these modes shows that this phase-lock behavior of APCoP is more apparent for 0.5, 0.625, 0.75 and 1 Hz perturbation intervals. The instantaneous energy profiles of the modes depict significant energy changes during the stimulus intervals in case of lock-in. The EMD technique provides the means to visualize the multiple oscillatory modes present in the APCoP signal with their time scale dependent on the signals’s successive extrema. As a result, the extracted oscillatory modes clearly show the time instances when the subject’s APCoP clearly synchronizes with the provided sinusoidal platform stimulus and when it does not.

    Citation: Rakesh Pilkar, Erik M. Bollt, Charles Robinson. Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 1085-1097. doi: 10.3934/mbe.2011.8.1085

    Related Papers:

    [1] Enas Abdulhay, Maha Alafeef, Hikmat Hadoush, V. Venkataraman, N. Arunkumar . EMD-based analysis of complexity with dissociated EEG amplitude and frequency information: a data-driven robust tool -for Autism diagnosis- compared to multi-scale entropy approach. Mathematical Biosciences and Engineering, 2022, 19(5): 5031-5054. doi: 10.3934/mbe.2022235
    [2] Ravichandra Madanu, Farhan Rahman, Maysam F. Abbod, Shou-Zen Fan, Jiann-Shing Shieh . Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition. Mathematical Biosciences and Engineering, 2021, 18(5): 5047-5068. doi: 10.3934/mbe.2021257
    [3] Derek H. Justice, H. Joel Trussell, Mette S. Olufsen . Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences and Engineering, 2006, 3(2): 419-440. doi: 10.3934/mbe.2006.3.419
    [4] Ziyang Sun, Xugang Xi, Changmin Yuan, Yong Yang, Xian Hua . Surface electromyography signal denoising via EEMD and improved wavelet thresholds. Mathematical Biosciences and Engineering, 2020, 17(6): 6945-6962. doi: 10.3934/mbe.2020359
    [5] Yujie Kang, Wenjie Li, Jidong Lv, Ling Zou, Haifeng Shi, Wenjia Liu . Exploring brain dysfunction in IBD: A study of EEG-fMRI source imaging based on empirical mode diagram decomposition. Mathematical Biosciences and Engineering, 2025, 22(4): 962-987. doi: 10.3934/mbe.2025035
    [6] Konki Sravan Kumar, Daehyun Lee, Ankhzaya Jamsrandoj, Necla Nisa Soylu, Dawoon Jung, Jinwook Kim, Kyung Ryoul Mun . sEMG-based Sarcopenia risk classification using empirical mode decomposition and machine learning algorithms. Mathematical Biosciences and Engineering, 2024, 21(2): 2901-2921. doi: 10.3934/mbe.2024129
    [7] Hongli Niu, Kunliang Xu . A hybrid model combining variational mode decomposition and an attention-GRU network for stock price index forecasting. Mathematical Biosciences and Engineering, 2020, 17(6): 7151-7166. doi: 10.3934/mbe.2020367
    [8] Huanhai Yang, Shue Liu . A prediction model of aquaculture water quality based on multiscale decomposition. Mathematical Biosciences and Engineering, 2021, 18(6): 7561-7579. doi: 10.3934/mbe.2021374
    [9] Rana D. Parshad, Stephen J. McGregor, Michael A. Busa, Joseph D. Skufca, Erik Bollt . A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners. Mathematical Biosciences and Engineering, 2012, 9(1): 123-145. doi: 10.3934/mbe.2012.9.123
    [10] Si Li, Limei Peng, Fenghuan Li, Zengguo Liang . Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging. Mathematical Biosciences and Engineering, 2023, 20(6): 9728-9758. doi: 10.3934/mbe.2023427
  • Bursts of 2.5mm horizontal sinusoidal anterior-posterior oscillations of sequentially varying frequencies (0.25 to 1.25 Hz) are applied to the base of support to study postural control. The Empirical Mode Decomposition (EMD) algorithm decomposes the Center of Pressure (CoP) data (5 young, 4 mature adults) into Intrinsic Mode Functions (IMFs). Hilbert transforms are applied to produce each IMF’s time-frequency spectrum. The most dominant mode in total energy indicates a sway ramble with a frequency content below 0.1 Hz. Other modes illustrate that the stimulus frequencies produce a ‘locked-in’ behavior of CoP with platform position signal. The combined Hilbert Spectrum of these modes shows that this phase-lock behavior of APCoP is more apparent for 0.5, 0.625, 0.75 and 1 Hz perturbation intervals. The instantaneous energy profiles of the modes depict significant energy changes during the stimulus intervals in case of lock-in. The EMD technique provides the means to visualize the multiple oscillatory modes present in the APCoP signal with their time scale dependent on the signals’s successive extrema. As a result, the extracted oscillatory modes clearly show the time instances when the subject’s APCoP clearly synchronizes with the provided sinusoidal platform stimulus and when it does not.


  • This article has been cited by:

    1. Rakesh Pilkar, Mathew Yarossi, Arvind Ramanujam, Venkateswaran Rajagopalan, Mehmed Bugrahan Bayram, Meghan Mitchell, Stephen Canton, Gail Forrest, Application of Empirical Mode Decomposition Combined With Notch Filtering for Interpretation of Surface Electromyograms During Functional Electrical Stimulation, 2017, 25, 1534-4320, 1268, 10.1109/TNSRE.2016.2624763
    2. Jia Cui, Renzhe Yu, Dongbo Zhao, Junyou Yang, Weichun Ge, Xiaoming Zhou, Intelligent load pattern modeling and denoising using improved variational mode decomposition for various calendar periods, 2019, 247, 03062619, 480, 10.1016/j.apenergy.2019.03.163
    3. Jia-Rong Yeh, Li-Chi Hsu, Chen Lin, Fu-Ling Chang, Men-Tzung Lo, Ramesh Balasubramaniam, Nonlinear Analysis of Sensory Organization Test for Subjects with Unilateral Vestibular Dysfunction, 2014, 9, 1932-6203, e91230, 10.1371/journal.pone.0091230
    4. Xiaohan Liu, Guangfeng Shi, Weina Liu, Wenqing Wu, An Improved Empirical Mode Decomposition Method for Vibration Signal, 2021, 2021, 1530-8677, 1, 10.1155/2021/5525270
    5. Yi-Ching Chen, Yi-Ying Tsai, Wei-Min Huang, Chen-Guang Zhao, Ing-Shiou Hwang, Age-Related Topological Organization of Phase-Amplitude Coupling Between Postural Fluctuations and Scalp EEG During Unsteady Stance, 2024, 32, 1534-4320, 3231, 10.1109/TNSRE.2024.3451023
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2733) PDF downloads(425) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog