Loading [Contrib]/a11y/accessibility-menu.js

Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method

  • Received: 01 January 2006 Accepted: 29 June 2018 Published: 01 February 2006
  • MSC : 92D30.

  • This paper shows how the multipulse method from digital signal processing can be used to accurately synthesize signals obtained from blood pressure and blood flow velocity sensors during posture change from sitting to standing. The multipulse method can be used to analyze signals that are composed of pulses of varying amplitudes. One of the advantages of the multipulse method is that it is able to produce an accurate and efficient representation of the signals at high resolution. The signals are represented as a set of input impulses passed through an autoregressive (AR) filter. The parameters that define the AR filter can be used to distinguish different conditions. In addition, the AR coefficients can be transformed to tube radii associated with digital wave guides, as well as pole-zero representation. Analysis of the dynamics of the model parameters have potential to provide better insight and understanding of the underlying physiological control mechanisms. For example, our data indicate that the tube radii may be related to the diameter of the blood vessels.

    Citation: Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method[J]. Mathematical Biosciences and Engineering, 2006, 3(2): 419-440. doi: 10.3934/mbe.2006.3.419

    Related Papers:

    [1] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [2] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [3] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371
    [4] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [5] Mette S. Olufsen, Ali Nadim . On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences and Engineering, 2004, 1(1): 61-80. doi: 10.3934/mbe.2004.1.61
    [6] Meiyuan Du, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang, Deyu Li . Investigation on aortic hemodynamics based on physics-informed neural network. Mathematical Biosciences and Engineering, 2023, 20(7): 11545-11567. doi: 10.3934/mbe.2023512
    [7] Fan He, Minru Li, Xinyu Wang, Lu Hua, Tingting Guo . Numerical investigation of quantitative pulmonary pressure ratio in different degrees of stenosis. Mathematical Biosciences and Engineering, 2024, 21(2): 1806-1818. doi: 10.3934/mbe.2024078
    [8] Giovanna Guidoboni, Alon Harris, Lucia Carichino, Yoel Arieli, Brent A. Siesky . Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences and Engineering, 2014, 11(3): 523-546. doi: 10.3934/mbe.2014.11.523
    [9] Yubo Sun, Yuanyuan Cheng, Yugen You, Yue Wang, Zhizhong Zhu, Yang Yu, Jianda Han, Jialing Wu, Ningbo Yu . A novel plantar pressure analysis method to signify gait dynamics in Parkinson's disease. Mathematical Biosciences and Engineering, 2023, 20(8): 13474-13490. doi: 10.3934/mbe.2023601
    [10] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
  • This paper shows how the multipulse method from digital signal processing can be used to accurately synthesize signals obtained from blood pressure and blood flow velocity sensors during posture change from sitting to standing. The multipulse method can be used to analyze signals that are composed of pulses of varying amplitudes. One of the advantages of the multipulse method is that it is able to produce an accurate and efficient representation of the signals at high resolution. The signals are represented as a set of input impulses passed through an autoregressive (AR) filter. The parameters that define the AR filter can be used to distinguish different conditions. In addition, the AR coefficients can be transformed to tube radii associated with digital wave guides, as well as pole-zero representation. Analysis of the dynamics of the model parameters have potential to provide better insight and understanding of the underlying physiological control mechanisms. For example, our data indicate that the tube radii may be related to the diameter of the blood vessels.


  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2560) PDF downloads(501) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog